[2] Aczél, J., Maksa, G., Taylor, M.:
Equations of generalized bisymmetry and of consistent aggregation: Weakly surjective solutions which may be discontinuous at places. J. Math. Anal. Appl. 214 (1997), 1, 22-35.
DOI 10.1006/jmaa.1997.5580 |
MR 1645499 |
Zbl 0936.39009
[3] Baczyński, M., Jayaram, B.:
On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Systems 17 (2009), 3, 590-603.
DOI 10.1109/TFUZZ.2008.924201
[4] Beliakov, G., Calvo, T., Pradera, A.: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin - Heidelberg 2007.
[5] Benvenuti, P., Vivona, D.:
General theory of the fuzzy integral. Mathware Soft Comput. 3 (1996), 199-209.
MR 1414267 |
Zbl 0857.28014
[6] Combs, W. E., Andrews, J. E.:
Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Systems 6 (1) (1998), 1, 1-11.
DOI 10.1109/91.660804
[8] Díaz, S., Montes, S., Baets, B. De:
Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems 15 (2007), 2, 275-286.
DOI 10.1109/tfuzz.2006.880004
[12] Gottwald, S.:
A Treatise on Many-Valued Logics. Research Studies Press, Hertfordshire 2001.
MR 1856623 |
Zbl 1048.03002
[16] Qin, F.:
Cauchy like functional equation based on continuous t-conorms and representable uninorms. IEEE Trans. Fuzzy Systems 20 (2013), 126-132.
DOI 10.1109/fuzz-ieee.2014.6891537
[17] Qin, F., Baczyński, M.:
Distributivity equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 21 (2012), 1, 153-167.
DOI 10.1109/TFUZZ.2011.2171188
[19] Qin, F., Yang, P. C.: On the distributive equation of implication based on a continuous t-norm and a continuous Archimedean t-conorm. In: BMEI, 4th International Conference 4, 2011, pp. 2290-2294.
[21] Rudas, I. J., Pap, E., Fodor, J.:
Information aggregation in intelligent systems: An application oriented approach. Knowledge-Based Systems 38 (2013), 3-13.
DOI 10.1016/j.knosys.2012.07.025
[22] Ruiz, D., Torrens, J.:
Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38.
MR 2068596 |
Zbl 1249.94095
[24] Saminger-Platz, S., Mesiar, R., Dubois, D.:
Aggregation Operators and Commuting. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1032-1045.
DOI 10.1109/TFUZZ.2006.890687
[25] Su, Y., Wang, Z., Tang, K.:
Left and right semi-uninorms on a complete lattice. Kybernetika 49 (2013), 6, 948-961.
MR 3182650 |
Zbl 1286.03098