Previous |  Up |  Next

Article

Keywords:
discrete-time Markov control processes; average criterion; stability index; Prokhorov metric
Summary:
We study the stability of average optimal control of general discrete-time Markov processes. Under certain ergodicity and Lipschitz conditions the stability index is bounded by a constant times the Prokhorov distance between distributions of random vectors determinating the “original and the perturbated” control processes.
References:
[1] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E., Ghosh, M. K., Marcus, S. I.: Discrete-time controlled Markov processes with average cost criterion: A survey. SIAM J. Control and Optimization 31 (1993), 282-344. DOI 10.1137/0331018 | MR 1205981 | Zbl 0770.93064
[2] Dudley, R. M.: Real Analysis and Probability. Wadsworth and Brooks/Cole, Pacific Grove 1989. DOI 10.1017/s0013091500018265 | MR 0982264 | Zbl 1023.60001
[3] Dudley, R. M.: The speed of mean Glivenko-Cantelly convergence. Ann. Math. Stat. 40 (1969), 40-50. DOI 10.1214/aoms/1177697802 | MR 0236977
[4] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1979. DOI 10.1002/zamm.19810610317 | MR 0554083
[5] Gordienko, E., Lemus-Rodríguez, E., Montes-de-Oca, R.: Average cost Markov control processes: stability with respect to the Kantorovich metric. Math. Methods Oper. Res. 70 (2009), 13-33. DOI 10.1007/s00186-008-0229-6 | MR 2529423 | Zbl 1176.60062
[6] Gordienko, E. I.: Stability estimates for controlled Markov chains with a minorant. J. Soviet. Math. 40 (1988), 481-486. DOI 10.1007/bf01083641 | MR 0957101 | Zbl 0638.90101
[7] Gordienko, E. I., Yushkevich, A. A.: Stability estimates in the problem of average optimal switching of a Markov Chain. Math. Methods Oper. Res. 57 (2003), 345-365. MR 1990916 | Zbl 1116.90401
[8] Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer-Verlag, New York 1989. DOI 10.1007/978-1-4419-8714-3 | MR 0995463 | Zbl 0677.93073
[9] Montes-de-Oca, R., Salem-Silva, F.: Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika 41 (2005), 757-772. MR 2193864 | Zbl 1249.90313
[10] Rachev, S. T., Rüschendorf, L.: Mass Transportation Problem, Vol. II: Applications. Springer, New York 1998. MR 1619171
[11] Vega-Amaya, O.: The average cost optimality equation: a fixed point approach. Bol. Soc. Math. Mexicana 9 (2003), 185-195. MR 1988598 | Zbl 1176.90626
Partner of
EuDML logo