[3] Blank, L., Garcke, H., Farshbaf-Shaker, M. Hassan, Styles, V.:
Relating phase field and sharp interface approaches to structural topology optimization. ESAIM Control Optim. Calc. Var. 20 (2014), 1025-1058.
DOI 10.1051/cocv/2014006 |
MR 3264233
[4] Blank, L., Garcke, H., Sarbu, L., Srisupattarawanit, T., Styles, V., Voigt, A.:
Phase-field approaches to structural topology optimization. Constrained Optimization and Optimal Control for Partial Differential Equations G. Leugering et al. International Series of Numerical Mathematics 160 Birkhäuser, Basel 245-256 (2012).
MR 3060477
[5] Bourdin, B., Chambolle, A.: The phase-field method in optimal design. M. P. Bendsø{e} et al. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Status and Perspectives. Proc. of the Conf. Rungstedgaard, Denmark, 2005 Springer, Dordrecht (2006).
[7] Choi, J. S., Yamada, T., Izui, K., Nishiwaki, S., Yoo, J.:
Topology optimization using a reaction-diffusion equation. Comput. Methods Appl. Mech. Eng. 200 (2011), 2407-2420.
DOI 10.1016/j.cma.2011.04.013 |
MR 2803635 |
Zbl 1230.74151
[8] Deaton, J. D., Grandhi, R. V.:
A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49 (2014), 1-38.
DOI 10.1007/s00158-013-0956-z |
MR 3182450
[9] Droske, M., Ring, W., Rumpf, M.:
Mumford-Shah based registration: a comparison of a level set and a phase field approach. Comput. Vis. Sci. 12 (2009), 101-114.
DOI 10.1007/s00791-008-0084-2 |
MR 2485788
[11] Haslinger, J., Mäkinen, R. A. E.:
Introduction to Shape Optimization. Theory, Approximation, and Computation. Advances in Design and Control 7 SIAM, Philadelphia (2003).
MR 1969772 |
Zbl 1020.74001
[12] Kronbichler, M., Kreiss, G.: A hybrid level-set-phase-field method for two-phase flow with contact lines. Technical Report 2011-026, University of Uppsala, Department of Information Technology, 2011.
[13] Myśliński, A.: Phase field approach to topology optimization of contact problems. Proc. of the 10th World Congress on Structural and Multidisciplinary Optimization R. Haftka ISSMO (2013), Paper 5434, 9 pages.
[14] Myśliński, A.: Shape and topology optimization of elastic contact problems using piecewise constant level set method. Proc. of the 11th International Conf. on Computational Structural Technology B. H. V. Topping Civil-Comp Press Stirlingshire (2012), Paper 233, 12 pages.
[15] Myśliński, A.:
Radial basis function level set method for structural optimization. Control Cybern. 39 (2010), 627-645.
MR 2791364 |
Zbl 1283.49052
[16] Myśliński, A.:
Level set method for shape and topology optimization of contact problems. Eng. Anal. Bound. Elem. 32 (2008), 986-994 System Modeling and Optimization 2009 IFIP Adv. Inf. Commun. Technol. 312 Elsevier, Oxford (2009), pp. 397-410 A. Korytowski et al.
DOI 10.1016/j.enganabound.2007.12.008 |
MR 2648854
[17] Osher, S., Fedkiw, R.:
Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences 153 Springer, New York (2003).
MR 1939127 |
Zbl 1026.76001
[20] Sokołowski, J., Żochowski, A.:
On topological derivative in shape optimization. Optimal Shape Design and Modelling T. Lewiński et al. Academic Printing House EXIT Warsaw, Poland (2004), 55-143.
MR 1691940
[23] Dijk, N. P. van, Maute, K., Langelaar, M., Keulen, F. van:
Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48 (2013), 437-472.
DOI 10.1007/s00158-013-0912-y |
MR 3107583
[25] Yamada, T., Izui, K., Nishiwaki, S., Takezawa, A.:
A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput. Methods Appl. Mech. Eng. 199 (2010), 2876-2891.
DOI 10.1016/j.cma.2010.05.013 |
MR 2740765 |
Zbl 1231.74365