[1] André, M.:
Homologie des algèbres commutatives. Die Grundlehren der mathematischen Wissenschaften 206 Springer, Berlin French (1974).
MR 0352220 |
Zbl 0284.18009
[2] Auslander, M., Bridger, M.:
Stable Module Theory. Memoirs of the American Mathematical Society 94 American Mathematical Society, Providence (1969).
MR 0269685 |
Zbl 0204.36402
[11] Christensen, L. W.:
Semi-dualizing complexes and their Auslander categories. Appendix: Chain defects Trans. Am. Math. Soc. 353 (2001), 1839-1883.
MR 1813596 |
Zbl 0969.13006
[18] Gelfand, S. I., Manin, Y. I.:
Methods of Homological Algebra. Springer Monographs in Mathematics Springer, Berlin (1996), translated from the Russian Nauka Moskva (1988).
Zbl 0668.18001
[19] Goto, S.:
A problem on Noetherian local rings of characteristic $p$. Proc. Am. Math. Soc. 64 (1977), 199-205.
MR 0447212 |
Zbl 0408.13008
[20] Grothendieck, A.: Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents, Première partie (I). Publ. Math., Inst. Hautes Étud. Sci. 11 French (1961), 349-511.
[21] Hartshorne, R.:
Residues and Duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/1964 Lecture Notes in Mathematics 20 Springer, Berlin (1966).
DOI 10.1007/BFb0080482 |
MR 0222093 |
Zbl 0212.26101
[22] Hungerford, T. W.:
Algebra. Graduate Texts in Mathematics 73 Springer, New York (1980).
MR 0600654 |
Zbl 0442.00002
[25] Kunz, E.:
Characterizations of regular local rings for characteristic $p$. Am. J. Math. 91 (1969), 772-784.
DOI 10.2307/2373351 |
MR 0252389
[26] Matsumura, H.:
Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1989).
MR 1011461 |
Zbl 0666.13002
[30] Sather-Wagstaff, S.:
Bass numbers and semidualizing complexes. Commutative Algebra and Its Applications M. Fontana et al. Conf. Proc. Fez, Morocco, 2009. Walter de Gruyter Berlin (2009), 349-381.
MR 2640315 |
Zbl 1184.13045
[32] Serre, J.-P.:
Sur la dimension homologique des anneaux et des modules noethériens. Proc. of the International Symposium on Algebraic Number Theory, Tokyo & Nikko, 1955 Science Council of Japan Tokyo French (1956), 175-189.
MR 0086071 |
Zbl 0073.26004
[34] Verdier, J.-L.:
On derived categories of abelian categories. G. Maltsiniotis Astérisque 239 Société Mathématique de France, Paris French (1996).
MR 1453167
[35] Verdier, J.-L.:
Catégories dérivées. Quelques résultats (Etat O). Cohomologie étale. Séminaire de géométrie algébrique du Bois-Marie SGA 4 1/2; Lecture Notes in Mathematics 569 Springer, Berlin French 262-311 (1977).
MR 0463174 |
Zbl 0407.18008