[1] Bonami, A., Grellier, S., Ky, L. D.:
Paraproducts and products of functions in BMO$(\mathbb R^n)$ and ${\cal H}^1(\mathbb R^n)$ through wavelets. J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary.
DOI 10.1016/j.matpur.2011.06.002 |
MR 2887623
[2] Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.:
On the product of functions in BMO and $H^1$. Ann. Inst. Fourier 57 (2007), 1405-1439.
MR 2364134 |
Zbl 1132.42010
[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S.:
Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129.
DOI 10.2478/agms-2012-0006 |
MR 3108869 |
Zbl 1261.42034
[4] Cao, J., Chang, D.-C., Yang, D., Yang, S.:
Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces. Commun. Pure Appl. Anal. 13 (2014), 1435-1463.
DOI 10.3934/cpaa.2014.13.1435 |
MR 3177739
[9] García-Cuerva, J., Francia, J. L. Rubio de:
Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985).
MR 0807149
[10] Grafakos, L.:
Modern Fourier Analysis. Graduate Texts in Mathematics 250 Springer, New York (2009).
MR 2463316 |
Zbl 1158.42001
[11] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.:
Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Am. Math. Soc. 1007 (2011), 78 pages.
MR 2868142 |
Zbl 1232.42018
[13] Hofmann, S., Mayboroda, S., McIntosh, A.:
Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary.
DOI 10.24033/asens.2154 |
MR 2931518 |
Zbl 1243.47072
[14] Hou, S., Yang, D., Yang, S.:
Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages.
MR 3139410 |
Zbl 1285.42020
[19] Ky, L. D.: Endpoint estimates for commutators of singular integrals related to Schrödinger operators. To appear in Rev. Mat. Iberoam.
[21] Ky, L. D.:
Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365 (2013), 2931-2958.
MR 3034454 |
Zbl 1272.42010
[22] Musielak, J.:
Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034 Springer, Berlin (1983).
MR 0724434 |
Zbl 0557.46020
[23] Ouhabaz, E. M.:
Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005).
MR 2124040 |
Zbl 1082.35003
[24] Rao, M. M., Ren, Z. D.:
Theory of Orlicz Spaces. Pure and Applied Mathematics 146 Marcel Dekker, New York (1991).
MR 1113700 |
Zbl 0724.46032
[26] Simon, B.:
Functional Integration and Quantum Physics. AMS Chelsea Publishing, Providence (2005).
MR 2105995 |
Zbl 1061.28010