[2] Bedford, E., Pinchuk, S.:
Domains in {${\mathbb C}^{n+1}$} with noncompact automorphism group. J. Geom. Anal. 1 (1991), 165-191.
DOI 10.1007/BF02921302 |
MR 1120679
[3] Bedford, E., Pinchuk, S. I.:
Domains in {${\mathbb C}^2$} with noncompact groups of holomorphic automorphisms. Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian.
DOI 10.1070/SM1989v063n01ABEH003264 |
MR 0937803
[4] Berteloot, F.:
Principe de Bloch et estimations de la métrique de Kobayashi des domaines de $\mathbb C^2$. J. Geom. Anal. 13 French (2003), 29-37.
DOI 10.1007/BF02930994 |
MR 1967034
[6] Berteloot, F., C{\oe}uré, G.:
Domaines de {${\mathbb C}^2$}, pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes. Ann. Inst. Fourier 41 French (1991), 77-86.
DOI 10.5802/aif.1249 |
MR 1112192
[8] Greene, R. E., Krantz, S. G.:
Techniques for studying automorphisms of weakly pseudoconvex domains. Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss.
MR 1207869 |
Zbl 0779.32017
[15] Rosay, J.-P.:
Sur une caractérisation de la boule parmi les domaines de {${\mathbb C}^n$} par son groupe d'automorphismes. Ann. Inst. Fourier 29 French (1979), 91-97.
DOI 10.5802/aif.768 |
MR 0558590
[16] Wong, B.:
Characterization of the unit ball in {${\mathbb C}^n$} by its automorphism group. Invent. Math. 41 (1977), 253-257.
DOI 10.1007/BF01403050 |
MR 0492401