[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[2] Babuška, I., Miller, A.:
A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Eng. 61 (1987), 1-40.
DOI 10.1016/0045-7825(87)90114-9 |
MR 0880421 |
Zbl 0593.65064
[4] Babuška, I., Strouboulis, T.:
The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation Clarendon Press, Oxford (2001).
MR 1857191
[7] Cascon, J. M., Kreuzer, C., Nochetto, R. H., Siebert, K. G.:
Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008), 2524-2550.
DOI 10.1137/07069047X |
MR 2421046 |
Zbl 1176.65122
[8] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[10] He, L., Zhou, A.:
Convergence and optimal complexity of adaptive finite element methods for elliptic partial differential equations. Int. J. Numer. Anal. Model. 8 (2011), 615-640.
MR 2805661
[11] Holst, M., McCammom, J. A., Yu, Z., Zhou, Y., Zhu, Y.:
Adaptive finite element modeling techniques for the Possion-Boltzmann equation. Commun. Comput. Phys. 11 (2012), 179-214.
DOI 10.4208/cicp.081009.130611a |
MR 2841952
[12] Lin, Q., Xie, H.:
A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. Proc. Internat. Conference `Applications of Mathematics', Prague, 2012. In Honor of the 60th Birthday of M. Křížek Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague (2012), 134-143 J. Brandts et al.
MR 3204407 |
Zbl 1313.65298
[19] Xie, H.:
A multilevel correction type of adaptive finite element method for eigenvalue problems. ArXiv:1201.2308 (2012).
MR 3204407