[1] Adams, R. A., Fournier, J. J. F.:
Sobolev Spaces. Pure and Applied Mathematics 140 Academic Press, New York (2003).
MR 2424078 |
Zbl 1098.46001
[3] Brandts, J., Korotov, S., Kříek, M.:
On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233.
DOI 10.1016/j.camwa.2007.11.010 |
MR 2413688
[5] Brezis, H.:
Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011).
MR 2759829 |
Zbl 1220.46002
[6] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40 SIAM, Philadelphia (2002), Repr., unabridged republ. of the orig. 1978.
MR 1930132
[8] Hannukainen, A., Korotov, S., Kříek, M.:
The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88.
DOI 10.1007/s00211-011-0403-2 |
MR 2885598
[9] Horn, R. A., Johnson, C. R.:
Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991).
MR 1091716 |
Zbl 0729.15001
[10] Jamet, P.:
Estimations d'erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat., R 10 French (1976), 43-60.
MR 0455282
[13] Kobayashi, K., Tsuchiya, T.: An extension of Babuška-Aziz's theorem to higher order Lagrange interpolation. ArXiv:1508.00119 (2015).
[14] Kříek, M.:
On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232.
MR 1109126
[15] Liu, X., Kikuchi, F.:
Analysis and estimation of error constants for $P_0$ and $P_1$ interpolations over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27-78.
MR 2676659 |
Zbl 1248.65118
[17] Yamamoto, T.: Elements of Matrix Analysis. Japanese Saiensu-sha (2010).
[18] Ženíšek, A.:
The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 Czech (1969), 355-376.
MR 0245978 |
Zbl 0188.22604