Previous |  Up |  Next

Article

Title: Several results on set-valued possibilistic distributions (English)
Author: Kramosil, Ivan
Author: Daniel, Milan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 391-407
Summary lang: English
.
Category: math
.
Summary: When proposing and processing uncertainty decision-making algorithms of various kinds and purposes, we more and more often meet probability distributions ascribing non-numerical uncertainty degrees to random events. The reason is that we have to process systems of uncertainties for which the classical conditions like $\sigma$-additivity or linear ordering of values are too restrictive to define sufficiently closely the nature of uncertainty we would like to specify and process. In cases of non-numerical uncertainty degrees, at least the following two criteria may be considered. The first criterion should be systems with rather complicated, but sophisticated and nontrivially formally analyzable uncertainty degrees, e. g., uncertainties supported by some algebras or partially ordered structures. Contrarily, we may consider easier relations, which are non-numerical but interpretable on the intuitive level. Well-known examples of such structures are set-valued possibilistic measures. Some specific interesting results in this direction are introduced and analyzed in this contribution. (English)
Keyword: probability measures
Keyword: possibility measures
Keyword: non-numerical uncertainty degrees
Keyword: set-valued uncertainty degrees
Keyword: possibilistic uncertainty functions
Keyword: set-valued entropy functions
MSC: 03E72
MSC: 28E99
MSC: 60A86
MSC: 68T37
MSC: 94A17
idZBL: Zbl 06487086
idMR: MR3391675
DOI: 10.14736/kyb-2015-3-0391
.
Date available: 2015-09-01T09:07:23Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144376
.
Reference: [1] Birkhoff, G.: Lattice Theory. Third edition..Providence, Rhode Island 1967. MR 0227053
Reference: [2] DeCooman, G.: Possibility theory I, II, III..Int. J. General Systems 25 (1997), 291-323, 325-351, 353-371. MR 1449009, 10.1080/03081079708945160
Reference: [3] Faure, R., Heurgon, E.: Structures Ordonnées et Algèbres de Boole..Gauthier-Villars, Paris 1971. Zbl 0219.06001, MR 0277440
Reference: [4] Fine, T. L.: Theories of Probability. An Examination of Foundations..Academic Press, New York - London 1973. Zbl 0275.60006, MR 0433529
Reference: [5] Goguen, J. A.: ${\cal L}$-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 145-174. MR 0224391, 10.1016/0022-247x(67)90189-8
Reference: [6] Halmos, P. R.: Measure Theory..D. van Nostrand, New York 1950. Zbl 0283.28001, MR 0033869
Reference: [7] Kramosil, I.: Extensions of partial lattice-valued possibilistic measures from nested domains..Int. J. Uncertain. Fuzziness and Knowledge-Based Systems 14 (2006), 175-197. Zbl 1086.28009, MR 2224969, 10.1142/s0218488506003935
Reference: [8] Kramosil, I., Daniel, M.: Statistical estimations of lattice-valued possibilistic distributions..In: Proc. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011 (W. Liu, ed.), LNCS (LNAI) 6717, Springer-Verlag Berlin - Heidelberg 2011, pp. 688-699. MR 2831217, 10.1007/978-3-642-22152-1_58
Reference: [9] Kramosil, I., Daniel, M.: Possibilistic distributions processed by probabilistic algorithms..Kybernetika, submitted for publication.
Reference: [10] Shannon, C. E.: The mathematical theory of communication..The Bell Systems Technical Journal 27 (1948), 379-423, 623-656. Zbl 0126.35701, MR 0026286, 10.1002/j.1538-7305.1948.tb00917.x
Reference: [11] Sikorski, R.: Boolean Algebras. Second edition..Springer, Berlin 1964. MR 0177920
Reference: [12] Zadeh, L. A.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427, 10.1016/s0019-9958(65)90241-x
Reference: [13] Zadeh, L. A.: Probability measures of fuzzy events..J. Math. Anal. Appl. 23 (1968), 421-427. Zbl 0174.49002, MR 0230569, 10.1016/0022-247x(68)90078-4
Reference: [14] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility..Fuzzy Sets and Systems 1 (1978), 3-28. Zbl 0377.04002, MR 0480045, 10.1016/0165-0114(78)90029-5
.

Files

Files Size Format View
Kybernetika_51-2015-3_2.pdf 301.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo