Previous |  Up |  Next

Article

Keywords:
cardinal function; character; pseudocharacter; reflection theorem; compact spaces; Lindelöf spaces; continuum hypothesis
Summary:
We say that a cardinal function $\phi$ reflects an infinite cardinal $\kappa$, if given a topological space $X$ with $\phi (X) \geq \kappa$, there exists $Y\in [X]^{\leq \kappa}$ with $\phi (Y)\geq \kappa$. We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47--66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with $\mathrm{CH}$.
References:
[1] Casarrubias-Segura F., Ramírez-Páramo A.: Reflection theorems for some cardinal functions. Topology Proc. 31 (2007), 51–65. MR 2363151 | Zbl 1144.54003
[2] Christodoulou S.: Initially $\kappa$-compact spaces for large $\kappa$. Comment. Math. Univ. Carolin. 40 (1999), no. 2, 319–325. MR 1732652 | Zbl 0976.54022
[3] Dow A.: An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17–72. MR 1031969 | Zbl 0696.03024
[4] Eckertson F.W.: Images of not Lindelöf spaces and their squares. Topology Appl. 62 (1995), 255–261. DOI 10.1016/0166-8641(94)00051-4 | MR 1326825 | Zbl 0861.54002
[5] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[6] Hajnal A., Juhász I.: Having a small weight is determined by the small subspaces. Proc. Amer. Math. Soc. 79 (1980), 657–658. DOI 10.1090/S0002-9939-1980-0572322-2 | MR 0572322 | Zbl 0432.54003
[7] Hodel R.E.: Cardinal functions I. Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1–61. MR 0776620 | Zbl 0559.54003
[8] Hodel R.E., Vaughan J.E.: Reflection theorems for cardinal functions. Topology Appl. 100 (2000), 47–66. DOI 10.1016/S0166-8641(99)00056-5 | MR 1731704 | Zbl 0943.54003
[9] Jech T.: Set Theory. Springer Monographs in Mathematics, Springer, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513 | Zbl 1007.03002
[10] Juhász I.: Cardinal functions in topology – ten years later. Mathematical Centre Tracts, 123, Amsterdam, 1980. MR 0576927 | Zbl 0479.54001
[11] Juhász I.: Cardinal functions and reflection. Topology Atlas Preprint no. 445, 2000. MR 0365453
[12] Juhász I., Koszmider P., Soukup L.: A first countable, initially $\omega_{1}$-compact but non-compact space. Topology Appl. 156 (2009), 1863-1879. DOI 10.1016/j.topol.2009.04.004 | MR 2519221 | Zbl 1168.54003
[13] Juhász I., Weiss W.A.R.: On the convergence and character spectra of compact spaces. Fund. Math. 207 (2010), 179–196. DOI 10.4064/fm207-2-6 | MR 2586011 | Zbl 1198.54003
[14] Junqueira L.R., Tall F.D.: The topology of elementary submodels. Topology Appl. 82 (1998), 239–266. DOI 10.1016/S0166-8641(97)00075-8 | MR 1602479 | Zbl 0903.54002
[15] Junqueira L.R.: Upwards preservation by elementary submodels. Topology Proc. 25 (2000), 225–249. MR 1875594 | Zbl 1002.54003
[16] Stephenson R.M., Jr.: Initially $\kappa$-compact and related spaces. Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603–632. MR 0776632 | Zbl 0588.54025
[17] Tkačenko M.G.: Chains and cardinals. Soviet Math. Dokl. 19 (1978), 382–385.
Partner of
EuDML logo