Previous |  Up |  Next

Article

Keywords:
triangular algebra; Jordan automorphism; automorphism
Summary:
We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism.
References:
[1] Aiat-Hadj A.D., Ben Yakoub L.: Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra. Internat. J. Math. Math. Sci. 13 (2005), 2125–2132. MR 2177700 | Zbl 1079.16017
[2] Benkovič D., Eremita D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280 (2004), 797–824. DOI 10.1016/j.jalgebra.2004.06.019 | MR 2090065 | Zbl 1076.16032
[3] Benkovič D., Eremita D.: Multiplicative Lie n-derivations of triangular rings. Linear Algebra Appl. 436 (2012), 4223–4240. DOI 10.1016/j.laa.2012.01.022 | MR 2915278 | Zbl 1247.16040
[4] Herstein I.N.: Jordan homomorphisms. Trans. Amer. Math. Soc. 81(2) (1956), 331–341. DOI 10.1090/S0002-9947-1956-0076751-6 | MR 0076751 | Zbl 0073.02202
[5] Khazal R., Dăscălescu S., Van Wyk L.: Isomorphism of generalized triangular matrix-rings and recovery of tiles. Internat. J. Math. Math. Sci. 9 (2003), 533–538. DOI 10.1155/S0161171203205251 | MR 1968340 | Zbl 1022.16019
Partner of
EuDML logo