Previous |  Up |  Next

Article

Keywords:
Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential
Summary:
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
References:
[1] Babin, A., Nicolaenko, B.: Exponential attractors for reaction-diffusion systems in an unbounded domain. J. Dyn. Differ. Equations 7 567-590 (1995). DOI 10.1007/BF02218725 | MR 1362671
[2] Brochet, D., Hilhorst, D.: Universal attractor and inertial sets for the phase field model. Appl. Math. Lett. 4 59-62 (1991). DOI 10.1016/0893-9659(91)90076-8 | MR 1136614 | Zbl 0773.35028
[3] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractor for the phase field model. Appl. Anal. 49 (1993), 197-212. DOI 10.1080/00036819108840173 | MR 1289743 | Zbl 0790.35052
[4] Brochet, D., Hilhorst, D., Novick-Cohen, A.: Finite-dimensional exponential attractor for a model for order-disorder and phase separation. Appl. Math. Lett. 7 83-87 (1994). DOI 10.1016/0893-9659(94)90118-X | MR 1350381 | Zbl 0803.35076
[5] Caginalp, G.: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 205-245 (1986). DOI 10.1007/BF00254827 | MR 0816623 | Zbl 0608.35080
[6] Caginalp, G.: The role of microscopic anisotropy in the macroscopic behavior of a phase boundary. Ann. Phys. 172 136-155 (1986). DOI 10.1016/0003-4916(86)90022-9 | MR 0912765 | Zbl 0639.58038
[7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 107-129 (2007). MR 2337372 | Zbl 1145.35042
[8] Conti, M., Gatti, S., Miranville, A.: Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). DOI 10.3934/dcdss.2012.5.485 | MR 2861821 | Zbl 1244.35067
[9] Fabrie, P., Galusinski, C.: Exponential attractors for partially dissipative reaction system. Asymptotic Anal. 12 329-354 (1996). DOI 10.3233/ASY-1996-12403 | MR 1402980
[10] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77-114. DOI 10.1002/mana.19981950106 | MR 1654677 | Zbl 0918.35064
[11] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 1475-1509 (2007). DOI 10.1002/mana.200510560 | MR 2354975 | Zbl 1133.35017
[12] Kufner, A., John, O., Fučík, S.: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). MR 0482102
[13] Landau, L. D., Lifschitz, E. M.: Course of Theoretical Physics. Vol. 1. Mechanics. Akademie Berlin German (1981).
[14] Miranville, A.: Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. MR 1669003 | Zbl 1141.35340
[15] Miranville, A.: On a phase-field model with a logarithmic nonlinearity. Appl. Math., Praha 57 (2012), 215-229. DOI 10.1007/s10492-012-0014-y | MR 2984601 | Zbl 1265.35139
[16] Miranville, A.: Some mathematical models in phase transition. Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). DOI 10.3934/dcdss.2014.7.271 | MR 3109473 | Zbl 1275.35048
[17] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). DOI 10.1016/j.na.2009.01.061 | MR 2524435 | Zbl 1167.35304
[18] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88 877-894 (2009). DOI 10.1080/00036810903042182 | MR 2548940 | Zbl 1178.35194
[19] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545-582. DOI 10.1002/mma.464 | MR 2041814 | Zbl 1050.35113
[20] Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). MR 2508165 | Zbl 1221.37158
[21] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences 68 Springer, New York (1997). DOI 10.1007/978-1-4612-0645-3 | MR 1441312 | Zbl 0871.35001
Partner of
EuDML logo