Previous |  Up |  Next

Article

Keywords:
difference equation; periodic solution; convergence
Summary:
In this paper, we introduce an explicit formula and discuss the global behavior of solutions of the difference equation \[ x_{n+1}=\frac{ax_{n-3} }{b+ cx_{n-1}x_{n-3}}\,,\qquad n=0,1,\dots \] where $a,b,c$ are positive real numbers and the initial conditions $x_{-3}$, $x_{-2}$, $x_{-1}$, $x_0$ are real numbers.
References:
[1] Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351. MR 2779248 | Zbl 1227.39015
[2] Abo-Zeid, R.: Global asymptotic stability of a second order rational difference equation. J. Appl. Math. & Inform. 2 (3) (2010), 797–804. MR 2779248 | Zbl 1294.39010
[3] Agarwal, R.P.: Difference Equations and Inequalities. first ed., Marcel Decker, 1992. MR 1155840 | Zbl 0925.39001
[4] Al-Shabi, M.A., Abo-Zeid, R.: Global asymptotic stability of a higher order difference equation. Appl. Math. Sci. 4 (17) (2010), 839–847. MR 2595521 | Zbl 1198.39025
[5] Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2008. MR 2363297 | Zbl 1129.39002
[6] Elsayed, E.M.: On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664. MR 2511022 | Zbl 1172.39009
[7] Elsayed, E.M.: On the solution of some difference equations. European J. Pure Appl. Math. 4 (2011), 287–303. MR 2824757
[8] Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC, 2005. MR 2193366 | Zbl 1078.39009
[9] Karakostas, G.: Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (4) (1993), 289–294. MR 1259169 | Zbl 0868.39002
[10] Karatas, R., Cinar, C., Simsek, D.: On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500. MR 2287595
[11] Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic, Dordrecht, 1993. MR 1247956 | Zbl 0787.39001
[12] Kruse, N., Nesemann, T.: Global asymptotic stability in some discrete dynamical systems. J. Math. Anal. Appl. 235 (1) (1999), 151–158. DOI 10.1006/jmaa.1999.6384 | MR 1758674 | Zbl 0933.37016
[13] Kulenović, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2002. MR 1935074 | Zbl 0981.39011
[14] Levy, H., Lessman, F.: Finite Difference Equations. Dover, New York, NY, USA, 1992. MR 1217083
[15] Sedaghat, H.: Global behaviours of rational difference equations of orders two and three with quadratic terms. J. Differ. Equations Appl. 15 (3) (2009), 215–224. DOI 10.1080/10236190802054126 | MR 2498770 | Zbl 1169.39006
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$. Int. J. Pure Appl. Math. 28 (1) (2006), 117–124. MR 2227156 | Zbl 1116.39005
[17] Simsek, D., Cinar, C., Yalcinkaya, I.: On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480. MR 2287592 | Zbl 1157.39311
[18] Stević, S.: More on a rational recurrence relation. Appl. Math. E-Notes 4 (2004), 80–84. MR 2077785 | Zbl 1069.39024
[19] Stević, S.: On positive solutions of a $(k +1)$th order difference equation. Appl. Math. Lett. 19 (5) (2006), 427–431. DOI 10.1016/j.aml.2005.05.014 | MR 2213143 | Zbl 1095.39010
Partner of
EuDML logo