[1] Abo-Zeid, R.:
Global asymptotic stability of a higher order difference equation. Bull. Allahabad Math. Soc. 2 (2) (2010), 341–351.
MR 2779248 |
Zbl 1227.39015
[2] Abo-Zeid, R.:
Global asymptotic stability of a second order rational difference equation. J. Appl. Math. & Inform. 2 (3) (2010), 797–804.
MR 2779248 |
Zbl 1294.39010
[4] Al-Shabi, M.A., Abo-Zeid, R.:
Global asymptotic stability of a higher order difference equation. Appl. Math. Sci. 4 (17) (2010), 839–847.
MR 2595521 |
Zbl 1198.39025
[5] Camouzis, E., Ladas, G.:
Dynamics of Third-Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2008.
MR 2363297 |
Zbl 1129.39002
[6] Elsayed, E.M.:
On the difference equation $x_{n+1}=\frac{x_{n-5}}{-1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 3 (33) (2008), 1657–1664.
MR 2511022 |
Zbl 1172.39009
[7] Elsayed, E.M.:
On the solution of some difference equations. European J. Pure Appl. Math. 4 (2011), 287–303.
MR 2824757
[8] Grove, E.A., Ladas, G.:
Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC, 2005.
MR 2193366 |
Zbl 1078.39009
[9] Karakostas, G.:
Convergence of a difference equation via the full limiting sequences method. Differential Equations Dynam. Systems 1 (4) (1993), 289–294.
MR 1259169 |
Zbl 0868.39002
[10] Karatas, R., Cinar, C., Simsek, D.:
On the positive solution of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}x_{n-5} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 495–500.
MR 2287595
[11] Kocic, V.L., Ladas, G.:
Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer Academic, Dordrecht, 1993.
MR 1247956 |
Zbl 0787.39001
[13] Kulenović, M.R.S., Ladas, G.:
Dynamics of Second Order Rational Difference Equations; With Open Problems and Conjectures. Chapman and Hall/HRC Boca Raton, 2002.
MR 1935074 |
Zbl 0981.39011
[14] Levy, H., Lessman, F.:
Finite Difference Equations. Dover, New York, NY, USA, 1992.
MR 1217083
[16] Simsek, D., Cinar, C., Karatas, R., Yalcinkaya, I.:
On the recursive sequence $x_{n+1}=\frac{x_{n-5}}{1+x_{n-1}x_{n-3}}$. Int. J. Pure Appl. Math. 28 (1) (2006), 117–124.
MR 2227156 |
Zbl 1116.39005
[17] Simsek, D., Cinar, C., Yalcinkaya, I.:
On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1} }$. Int. J. Contemp. Math. Sciences 1 (10) (2006), 475–480.
MR 2287592 |
Zbl 1157.39311
[18] Stević, S.:
More on a rational recurrence relation. Appl. Math. E-Notes 4 (2004), 80–84.
MR 2077785 |
Zbl 1069.39024