Previous |  Up |  Next

Article

Keywords:
real hypersurface; complex two-plane Grassmannian; Hopf hypersurface; Levi-Civita connection; generalized Tanaka-Webster connection; normal Jacobi operator
Summary:
We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian $G_2({\mathbb C}^{m+2})$. In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying such conditions.
References:
[1] Alekseevskii, D. V.: Compact quaternion spaces. Funkts. Anal. Prilozh. Russian 2 (1968), 11-20. MR 0231314
[2] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137 (2002), 87-98. DOI 10.1007/s00605-001-0494-4 | MR 1937621 | Zbl 1015.53034
[3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127 (1999), 1-14. DOI 10.1007/s006050050018 | MR 1666307 | Zbl 0920.53016
[4] Cho, J. T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. 54 (1999), 473-487. MR 1694456 | Zbl 0929.53029
[5] Jeong, I., Kim, H. J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator. Publ. Math. 76 (2010), 203-218. MR 2598182 | Zbl 1274.53080
[6] Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with $\frak F$-parallel normal Jacobi operator. Kyungpook Math. J. 51 (2011), 395-410. DOI 10.5666/KMJ.2011.51.4.395 | MR 2874974 | Zbl 1260.53093
[7] Ki, U.-H., Pérez, J. D., Santos, F. G., Suh, Y. J.: Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator. J. Korean Math. Soc. 44 (2007), 307-326. DOI 10.4134/JKMS.2007.44.2.307 | MR 2295391 | Zbl 1144.53069
[8] Kon, M.: Real hypersurfaces in complex space forms and the generalized Tanaka-Webster connection. Proc. of Workshop on Differential Geometry and Related Fields, Taegu, Korea, 2009 Y. J. Suh et al. Korean Mathematical Society and Grassmann Research Group Natl. Inst. Math. Sci., Taegu (2009), 145-159. MR 2641131 | Zbl 1185.53058
[9] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47 (2010), 551-561. DOI 10.4134/BKMS.2010.47.3.551 | MR 2666376 | Zbl 1206.53064
[10] Lee, H., Suh, Y. J., Woo, C.: Real hypersurfaces in complex two-plane Grassmannians with commuting Jacobi operators. Houston J. Math. 40 (2014), 751-766. MR 3275621
[11] Pak, E., Pérez, J. D., Machado, C. J. G., Woo, C.: Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator. Czech. Math. J. 65 (2015), 207-218. DOI 10.1007/s10587-015-0169-2 | MR 3336034
[12] Pérez, J. D., Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator. Acta Math. Hungar. 117 (2007), 201-217. DOI 10.1007/s10474-007-6091-9 | MR 2361601 | Zbl 1220.53070
[13] Pérez, J. D., Suh, Y. J.: Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$. Differ. Geom. Appl. 7 (1997), 211-217. DOI 10.1016/S0926-2245(97)00003-X | MR 1480534 | Zbl 0901.53011
[14] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Jap. J. Math., New Ser. 2 (1976), 131-190. DOI 10.4099/math1924.2.131 | MR 0589931 | Zbl 0346.32010
[15] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314 (1989), 349-379. DOI 10.1090/S0002-9947-1989-1000553-9 | MR 1000553 | Zbl 0677.53043
[16] Webster, S. M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13 (1978), 25-41. DOI 10.4310/jdg/1214434345 | MR 0520599 | Zbl 0379.53016
Partner of
EuDML logo