[3] Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. Internat. J. Engrg., Sci. Technol. 1 (2009), 228-244.
[6] Dutta, S.:
On the propagation of Love type waves in an infinite cylinder with rigidity and density varying linearly with the radial distance. Pure Applied Geophys. 98 (1972), 35-39.
DOI 10.1007/BF00875578
[7] Lakshmikantham, V., Leela, S.:
Differential and Integral Inequalities. Theory and Applications. Vol. I: Ordinary Differential Equations. Mathematics in Science and Engineering. Vol. 55 Academic Press, New York (1969).
MR 0379933 |
Zbl 0177.12403
[8] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites nonlinéaires. French Etudes mathematiques Dunod; Gauthier-Villars, Paris (1969).
MR 0259693
[11] Ngoc, L. T. P., Duy, N. T., Long, N. T.:
Existence and properties of solutions of a boundary problem for a Love's equation. Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016.
MR 3295564 |
Zbl 1304.35231
[12] Ngoc, L. T. P., Long, N. T.:
A high order iterative scheme for a nonlinear Kirchhoff wave equation in the unit membrane. Int. J. Differ. Equ. 2011 (2011), Article ID 679528, 31 pages.
MR 2854955 |
Zbl 1242.35014
[13] Ngoc, L. T. P., Truong, L. X., Long, N. T.:
An $N$-order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions. Acta Math. Vietnam. 35 (2010), 207-227.
MR 2731324 |
Zbl 1233.35134
[14] Ogino, T., Takeda, S.:
Computer simulation and analysis for the spherical and cylindrical ion-acoustic solitons. J. Phys. Soc. Jpn. 41 (1976), 257-264.
DOI 10.1143/JPSJ.41.257
[16] Paul, M. K.:
On propagation of Love-type waves on a spherical model with rigidity and density both varying exponentially with the radial distance. Pure Applied Geophys. 59 (1964), 33-37.
DOI 10.1007/BF00880505 |
Zbl 0135.23902
[17] Radochová, V.:
Remark to the comparison of solution properties of Love's equation with those of wave equation. Apl. Mat. 23 (1978), 199-207.
MR 0492985
[19] Truong, L. X., Ngoc, L. T. P., Long, N. T.:
High-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed homogeneous conditions. Nonlinear Anal., Theory Mathods Appl., Ser. A, Theory Methods 71 (2009), 467-484.
DOI 10.1016/j.na.2008.10.086 |
MR 2518053 |
Zbl 1173.35603
[20] Truong, L. X., Ngoc, L. T. P., Long, N. T.:
The $N$-order iterative schemes for a nonlinear Kirchhoff-Carrier wave equation associated with the mixed inhomogeneous conditions. Appl. Math. Comput. 215 (2009), 1908-1925.
DOI 10.1016/j.amc.2009.07.056 |
MR 2557432 |
Zbl 1191.65122