Previous |  Up |  Next

Article

Keywords:
array of rowwise pairwise negative quadrant dependent random variables; complete convergence; dependent bootstrap; sequence of i.i.d.\ random variables
Summary:
Let $\{X_{n,j}, 1\leq j\leq m(n), n\geq 1\}$ be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let $0<b_n\rightarrow \infty $. Conditions are given for $\sum \nolimits _{j=1}^{m(n)}X_{n,j}/b_n\rightarrow 0$ completely and for $\max \nolimits _{1\leq k\leq m(n)}\Bigl |\sum \nolimits _{j=1}^kX_{n,j}\Big |/b_n\rightarrow 0$ completely. As an application of these results, we obtain a complete convergence theorem for the row sums $\sum \nolimits _{j=1}^{m(n)}X_{n,j}^*$ of the dependent bootstrap samples $\{\{X_{n,j}^*, 1\leq j\leq m(n)\}, n\geq 1\}$ arising from a sequence of i.i.d.\ random variables $\{X_n, n\geq 1\}$.
References:
[1] Bozorgnia, A., Patterson, R. F., Taylor, R. L.: On strong laws of large numbers for arrays of rowwise independent random elements. Int. J. Math. Math. Sci. 16 (1993), 587-591. DOI 10.1155/S0161171293000729 | MR 1225505 | Zbl 0844.60005
[2] Bozorgnia, A., Patterson, R. F., Taylor, R. L.: Limit theorems for dependent random variables. V. Lakshmikantham World Congress of Nonlinear Analysts '92, Vol. I--IV Proc. of the First World Congress, Tampa, 1992. De Gruyter Berlin (1996), 1639-1650. MR 1389197 | Zbl 0845.60010
[3] Bozorgnia, A., Patterson, R. F., Taylor, R. L.: Chung type strong laws for arrays of random elements and bootstrapping. Stochastic Anal. Appl. 15 (1997), 651-669. DOI 10.1080/07362999708809501 | MR 1478879 | Zbl 0899.60028
[4] Chung, K.-L.: Note on some strong laws of large numbers. Am. J. Math. 69 (1947), 189-192. DOI 10.2307/2371664 | MR 0019853 | Zbl 0034.07103
[5] Efron, B.: Bootstrap methods: Another look at the jackknife. Ann. Stat. 7 (1979), 1-26. DOI 10.1214/aos/1176344552 | MR 0515681 | Zbl 0406.62024
[6] Erdős, P.: On a theorem of Hsu and Robbins. Ann. Math. Stat. 20 (1949), 286-291. DOI 10.1214/aoms/1177730037 | MR 0030714 | Zbl 0033.29001
[7] Gan, S., Chen, P.: Some limit theorems for sequences of pairwise NQD random variables. Acta Math. Sci., Ser. B, Engl. Ed. 28 (2008), 269-281. MR 2411834 | Zbl 1174.60330
[8] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. DOI 10.1073/pnas.33.2.25 | MR 0019852 | Zbl 0030.20101
[9] Hu, T.-C., Móricz, F., Taylor, R. L.: Strong laws of large numbers for arrays of rowwise independent random variables. Acta Math. Hung. 54 (1989), 153-162. DOI 10.1007/BF01950716 | MR 1015785
[10] Hu, T.-C., Cabrera, M. Ordóñez, Volodin, A.: Almost sure lim sup behavior of dependent bootstrap means. Stochastic Anal. Appl. 24 (2006), 939-952. DOI 10.1080/07362990600869969 | MR 2258910
[11] Hu, T.-C., Taylor, R. L.: On the strong law for arrays and for the bootstrap mean and variance. Int. J. Math. Math. Sci. 20 (1997), 375-382. DOI 10.1155/S0161171297000483 | MR 1444739 | Zbl 0883.60024
[12] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Stat. 37 (1966), 1137-1153. DOI 10.1214/aoms/1177699260 | MR 0202228 | Zbl 0146.40601
[13] Li, D., Rosalsky, A., Volodin, A. I.: On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables. Bull. Inst. Math., Acad. Sin. (N.S.) 1 (2006), 281-305. MR 2230590 | Zbl 1102.60026
[14] Matuła, P.: A note on the almost sure convergence of sums of negatively dependent random variables. Stat. Probab. Lett. 15 (1992), 209-213. DOI 10.1016/0167-7152(92)90191-7 | MR 1190256 | Zbl 0925.60024
[15] Patterson, R. F., Smith, W. D., Taylor, R. L., Bozorgnia, A.: Limit theorems for negatively dependent random variables. Nonlinear Anal., Theory Methods Appl. 47 (2001), 1283-1295. DOI 10.1016/S0362-546X(01)00265-6 | MR 1970737 | Zbl 1042.60503
[16] Patterson, R. F., Taylor, R. L.: Strong laws of large numbers for negatively dependent random elements. Nonlinear Anal., Theory Methods Appl. 30 (1997), 4229-4235. DOI 10.1016/S0362-546X(97)00279-4 | MR 1603567
[17] Pemantle, R.: Towards a theory of negative dependence. J. Math. Phys. 41 (2000), 1371-1390. DOI 10.1063/1.533200 | MR 1757964 | Zbl 1052.62518
[18] Smith, W. D., Taylor, R. L.: Consistency of dependent bootstrap estimators. Am. J. Math. Manage. Sci. 21 (2001), 359-382. MR 1896966
[19] Smith, W. D., Taylor, R. L.: Dependent bootstrap confidence intervals. Selected Proceeding of the Symposium on Inference for Stochastic Processes, Athens, 2000 IMS Lecture Notes Monogr. Ser. 37 Inst. Math. Statist, Beachwood (2001), 91-107. MR 2002505
[20] Taylor, R. L., Patterson, R. F., Bozorgnia, A.: A strong law of large numbers for arrays of rowwise negatively dependent random variables. Stochastic Anal. Appl. 20 (2002), 643-656. DOI 10.1081/SAP-120004118 | MR 1900307 | Zbl 1003.60032
[21] Volodin, A., Cabrera, M. Ordóñez, Hu, T. C.: Convergence rate of the dependent bootstrapped means. Theory Probab. Appl. 50 (2006), 337-346 translation from Teor. Veroyatn. Primen. 50 (2005), 344-352 Russian. MR 2221716
[22] Wu, Q.: Convergence properties of pairwise NQD random sequences. Acta Math. Sin. 45 (2002), 617-624 Chinese. MR 1915127 | Zbl 1008.60039
[23] Wu, Y., Wang, D.: Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. Appl. Math., Praha 57 (2012), 463-476. DOI 10.1007/s10492-012-0027-6 | MR 2984614 | Zbl 1265.60067
[24] Wu, Y.-F., Zhu, D.-J.: Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables. J. Korean Stat. Soc. 39 (2010), 189-197. DOI 10.1016/j.jkss.2009.05.003 | MR 2642485 | Zbl 1294.60056
Partner of
EuDML logo