Previous |  Up |  Next

Article

Keywords:
Bresse system; delay terms; decay rate; multiplier method
Summary:
We consider the Bresse system in bounded domain with delay terms in the internal feedbacks and prove the global existence of its solutions in Sobolev spaces by means of semigroup theory under a condition between the weight of the delay terms in the feedbacks and the weight of the terms without delay. Furthermore, we study the asymptotic behavior of solutions using multiplier method.
References:
[1] Bresse J.A.C.: Cours de Méchanique Appliquée. Mallet Bachelier, Paris, 1859.
[2] Kim J.U., Renardy Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987), 1417–1429. DOI 10.1137/0325078 | MR 0912448 | Zbl 0632.93057
[3] Messaoudi S.A., Mustapha M.I.: On the internal and boundary stabilization of Timoshenko beams. Nonlinear Differ. Equ. Appl. 15 (2008), 655–671. DOI 10.1007/s00030-008-7075-3 | MR 2465776
[4] Messaoudi S.A., Mustapha M.I.: On the stabilization of the Timochenko system by a weak nonlinear dissipation. Math. Meth. Appl. Sci. 32 (2009), 454–469. DOI 10.1002/mma.1047 | MR 2493590
[5] Park J.H., Kang J.R.: Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation. IMA J. Appl. Math. 76 (2011), 340–350. DOI 10.1093/imamat/hxq040 | MR 2781698 | Zbl 1219.35311
[6] Raposo C.A., Ferreira J., Santos J., Castro N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 18 (2005), no. 5, 535–541. DOI 10.1016/j.aml.2004.03.017 | MR 2127817 | Zbl 1072.74033
[7] Liu Z., Rao B.: Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 60 (2009), 54–69. DOI 10.1007/s00033-008-6122-6 | MR 2469727 | Zbl 1161.74030
[8] Shinskey F.G.: Process Control Systems. McGraw-Hill Book Company, New York, 1967.
[9] Abdallah C., Dorato P., Benitez-Read J., Byrne R.: Delayed Positive Feedback Can Stabilize Oscillatory System. ACC, San Francisco, (1993), 3106–3107.
[10] Suh I.H., Bien Z.: Use of time delay action in the controller design. IEEE Trans. Autom. Control 25 (1980), 600–603. DOI 10.1109/TAC.1980.1102347
[11] Datko R., Lagnese J., Polis M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), 152–156. DOI 10.1137/0324007 | MR 0818942 | Zbl 0592.93047
[12] Nicaise S., Pignotti C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006), no. 5, 1561–1585. DOI 10.1137/060648891 | MR 2272156 | Zbl 1180.35095
[13] Xu C.Q., Yung S.P., Li L.K.: Stabilization of the wave system with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12 (2006), 770–785. DOI 10.1051/cocv:2006021 | MR 2266817
[14] Brézis H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Notas de Matemática (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973. MR 0348562 | Zbl 0252.47055
[15] Haraux A.: Two remarks on hyperbolic dissipative problems. Res. Notes in Math. 122, Pitman, Boston, MA, 1985, pp. 161–179. MR 0879461 | Zbl 0579.35057
[16] Komornik V.: Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Paris, 1994. MR 1359765 | Zbl 0937.93003
Partner of
EuDML logo