Previous |  Up |  Next

Article

Keywords:
loop; inner mapping group; centrally nilpotent loop
Summary:
Let $Q$ be a finite commutative loop and let the inner mapping group $I(Q) \cong C_{p^n} \times C_{p^n}$, where $p$ is an odd prime number and $n \geq 1$. We show that $Q$ is centrally nilpotent of class two.
References:
[1] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. DOI 10.1090/S0002-9947-1946-0017288-3 | MR 0017288 | Zbl 0061.02201
[2] Csörgö P.: Abelian inner mappings and nilpotency class greater than two. European J. Combin. 28 (2007), 858–867. DOI 10.1016/j.ejc.2005.12.002 | MR 2300766 | Zbl 1149.20053
[3] Drápal A., Vojtěchovský P.: Explicit constructions of loops with commuting inner mappings. European J. Combin. 29 (2008), no. 7, 1662–1681. DOI 10.1016/j.ejc.2007.10.001 | MR 2431758
[4] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups. Arch. Math. 60 (1993), 233–236. DOI 10.1007/BF01198806 | MR 1201636
[5] Niemenmaa M.: On finite loops whose inner mapping groups are abelian II. Bull. Austral. Math. Soc. 71 (2005), 487–492. DOI 10.1017/S0004972700038491 | MR 2150938 | Zbl 1080.20061
[6] Niemenmaa M., Kepka T.: On multiplication groups of loops. J. Algebra 135 (1990), 112–122. DOI 10.1016/0021-8693(90)90152-E | MR 1076080 | Zbl 0706.20046
[7] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups. Bull. Austral. Math. Soc. 49 (1994), 121–128. DOI 10.1017/S0004972700016166 | MR 1262682 | Zbl 0799.20020
[8] Niemenmaa M., Rytty M.: Connected transversals and multiplication groups of loops. Quasigroups and Related Systems 15 (2007), 95–107. MR 2379127 | Zbl 1133.20009
Partner of
EuDML logo