Previous |  Up |  Next

Article

Keywords:
Lagrange interpolation; Lagrange approximation; Kergin interpolation; Kergin approximation; Banach space
Summary:
Starting from Lagrange interpolation of the exponential function ${\rm e}^z$ in the complex plane, and using an integral representation formula for holomorphic functions on Banach spaces, we obtain Lagrange interpolating polynomials for representable functions defined on a Banach space $E$. Given such a representable entire funtion $f\colon E \to \mathbb C$, in order to study the approximation problem and the uniform convergence of these polynomials to $f$ on bounded sets of $E$, we present a sufficient growth condition on the interpolating sequence.
References:
[1] Andersson, M., Passare, M.: Complex Kergin interpolation. J. Approx. Theory 64 (1991), 214-225. DOI 10.1016/0021-9045(91)90076-M | MR 1091471 | Zbl 0725.32011
[2] Bloom, T.: Kergin interpolation of entire functions on $\mathbb{C}^n$. Duke Math. J. 48 (1981), 69-83. DOI 10.1215/S0012-7094-81-04805-5 | MR 0610176
[3] Boor, C. de: Divided differences. Surv. Approx. Theory 1 (2005), 46-69. MR 2221566 | Zbl 1071.65027
[4] Dineen, S., Nilsson, L.: Integral representation of holomorphic mappings on fully nuclear spaces. J. Math. Anal. Appl. 339 146-152 (2008). DOI 10.1016/j.jmaa.2007.04.035 | MR 2370639 | Zbl 1134.46019
[5] Fernique, X.: Intégrabilité des vecteurs Gaussiens. C. R. Acad. Sci., Paris, Sér. A 270 1698-1699 (1970), French. MR 0266263 | Zbl 0206.19002
[6] Filipsson, L.: Kergin interpolation in Banach spaces. J. Approx. Theory 127 108-123 (2004). DOI 10.1016/j.jat.2004.01.002 | MR 2053536 | Zbl 1043.41001
[7] Filipsson, L.: Complex mean-value interpolation and approximation of holomorphic functions. J. Approx. Theory 91 244-278 (1997). DOI 10.1006/jath.1996.3096 | MR 1484043 | Zbl 0904.32012
[8] Gelfond, A. O.: Calcul des Différences Finies. Collection Universitaire de Mathématiques 12 Dunod, Paris French (1963). MR 0157139
[9] Genocchi, A.: On the Maclaurin summation formula and interpolating functions. C. R. Acad. Sci., Paris, Sér. A 86 Italian 466-469 (1878).
[10] Kergin, P.: A natural interpolation of $C^K$ functions. J. Approx. Theory 29 278-293 (1980). DOI 10.1016/0021-9045(80)90116-1 | MR 0598722
[11] Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463 Springer, Berlin (1975). DOI 10.1007/BFb0082008 | MR 0461643 | Zbl 0306.28010
[12] Petersson, H.: Kergin interpolation in Banach spaces. Stud. Math. 153 101-114 (2002). DOI 10.4064/sm153-2-1 | MR 1948919 | Zbl 1085.46032
[13] Pinasco, D., Zalduendo, I.: Integral representation of holomorphic functions on Banach spaces. J. Math. Anal. Appl. 308 159-174 (2005). DOI 10.1016/j.jmaa.2004.11.031 | MR 2142411 | Zbl 1086.46033
[14] Simon, S.: Kergin approximation in Banach spaces. J. Approx. Theory 154 181-186 (2008). DOI 10.1016/j.jat.2008.04.006 | MR 2474771 | Zbl 1157.41001
Partner of
EuDML logo