Previous |  Up |  Next

Article

Keywords:
Todorcevic orderings; random reals
Summary:
In [Two examples of Borel partially ordered sets with the countable chain condition, Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128], Todorcevic introduced a ccc forcing which is Borel definable in a separable metric space. In [On Todorcevic orderings, Fund. Math., to appear], Balcar, Pazák and Thümmel applied it to more general topological spaces and called such forcings Todorcevic orderings. There they analyze Todorcevic orderings quite deeply. A significant remark is that Thümmel solved the problem of Horn and Tarski by use of Todorcevic ordering [The problem of Horn and Tarski, Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000]. This paper supplements the analysis of Todorcevic orderings due to Balcar, Pazák and Thümmel in [On Todorcevic orderings, Fund. Math., to appear]. More precisely, it is proved that Todorcevic orderings add no random reals whenever they have the countable chain condition.
References:
[1] Balcar B., Jech T.: Weak distributivity, a problem of von Neumann and the mystery of measurability. Bull. Symbolic Logic 12 (2006), no. 2, 241–266. DOI 10.2178/bsl/1146620061 | MR 2223923 | Zbl 1120.03028
[2] Balcar B., Pazák T., Thümmel E.: On Todorcevic orderings. Fund. Math.(to appear). MR 3294608
[3] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line. A K Peters, Ltd., Wellesley, MA, 1995. MR 1350295
[4] Dow A., Steprāns J.: Countable Fréchet $\alpha_1$-spaces may be first countable. Arch. Math. Logic 32 (1992), no. 1, 33–50. DOI 10.1007/BF01270393 | MR 1186465
[5] Horn A., Tarski A.: Measures in Boolean algebras. Trans. Amer. Math. Soc. 64 (1948), 467–497. DOI 10.1090/S0002-9947-1948-0028922-8 | MR 0028922 | Zbl 0035.03001
[6] Judah H., Repický M.: No random reals in countable support iterations. Israel J. Math. 92 (1995), no. 1–3, 349–359. DOI 10.1007/BF02762088 | MR 1357763 | Zbl 0838.03039
[7] Larson P., Todorcevic S.: Katětov's problem. Trans. Amer. Math. Soc. 354 (2002), no. 5, 1783–1791. DOI 10.1090/S0002-9947-01-02936-1 | MR 1881016 | Zbl 0995.54021
[8] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals. Arch. Math. Logic 53 (2014), no. 1–2, 43–56. DOI 10.1007/s00153-013-0354-7 | MR 3151397
[9] Solovay R.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. of Math. (2) 92 (1970), 1–56. DOI 10.2307/1970696 | MR 0265151 | Zbl 0207.00905
[10] Talagrand M.: Maharam's problem. Ann. of Math. (2) 168 (2008), no. 3, 981–1009. DOI 10.4007/annals.2008.168.981 | MR 2456888 | Zbl 1185.28002
[11] Thümmel E.: The problem of Horn and Tarski. Proc. Amer. Math. Soc. 142 (2014), no. 6, 1997–2000. DOI 10.1090/S0002-9939-2014-11965-4 | MR 3182018
[12] Todorcevic S.: Partition Problems in Topology. Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. DOI 10.1090/conm/084 | MR 0980949 | Zbl 0659.54001
[13] Todorcevic S.: Two examples of Borel partially ordered sets with the countable chain condition. Proc. Amer. Math. Soc. 112 (1991), no. 4, 1125–1128. DOI 10.2307/2048663 | MR 1069693 | Zbl 0727.03030
[14] Todorcevic S.: A problem of von Neumann and Maharam about algebras supporting continuous submeasures. Fund. Math. 183 (2004), no. 2, 169–183. DOI 10.4064/fm183-2-7 | MR 2127965 | Zbl 1071.28004
[15] Todorcevic S.: A Borel solution to the Horn-Tarski problem. Acta Math. Hungar. 142 (2014), no. 2, 526–533. DOI 10.1007/s10474-013-0362-4 | MR 3165500 | Zbl 1299.03055
[16] Velickovic B.: CCC posets of perfect trees. Compos. Math. 79 (1991), no. 3, 279–294. MR 1121140 | Zbl 0735.03023
[17] Yorioka T.: Some weak fragments of Martin's axiom related to the rectangle refining property. Arch. Math. Logic 47 (2008), no. 1, 79–90. DOI 10.1007/s00153-008-0075-5 | MR 2410821 | Zbl 1153.03038
[18] Yorioka T.: The inequality $\mathfrak{b}>\aleph_1$ can be considered as an analogue of Suslin's Hypothesis. Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), S\=urikaisekikenky\=usho K\=oky\=uroku No. 1595 (2008), 84–88.
[19] Yorioka T.: A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees. Ann. Pure Appl. Logic 161 (2010), no. 4, 469–487. DOI 10.1016/j.apal.2009.02.006 | MR 2584728 | Zbl 1225.03065
[20] Yorioka T.: Uniformizing ladder system colorings and the rectangle refining property. Proc. Amer. Math. Soc. 138 (2010), no. 8, 2961–2971. MR 2644907 | Zbl 1200.03039
[21] Yorioka T.: A correction to “A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees”. Ann. Pure Appl. Logic 162 (2011), 752–754. DOI 10.1016/j.apal.2011.02.003 | MR 2794259 | Zbl 1225.03065
[22] Yorioka T.: Keeping the covering number of the null ideal small. preprint, 2013.
Partner of
EuDML logo