Previous |  Up |  Next

Article

Keywords:
approximation; real-analytic; entire functions
Summary:
We show that a $C^k$-smooth mapping on an open subset of $\mathbb R^n$, $k\in \mathbb N\cup\{0,\infty\}$, can be approximated in a fine topology and together with its derivatives by a restriction of a holomorphic mapping with explicitly described domain. As a corollary we obtain a generalisation of the Carleman-Scheinberg theorem on approximation by entire functions.
References:
[C] Carleman T.: Sur un théorème de Weierstrass. (French), Ark. Mat., Ast. Fysik 20B (1927), no. 4, 1–5.
[FG] Frih E.M., Gauthier P.M.: Approximation of a function and its derivatives by entire functions of several variables. Canad. Math. Bull. 31 (1988), no. 4, 495–499. DOI 10.4153/CMB-1988-071-1 | MR 0971578 | Zbl 0641.32011
[FHHMZ] Fabian M., Habala P., Hájek P., Montesinos V., Zizler V.: Banach Space Theory. CMS Books in Mathematics, Springer, New York, 2011. MR 2766381 | Zbl 1229.46001
[Hi] Hille E.: Functional analysis and semi-groups. Amer. Math. Soc. Colloq. Publ. 31, American Mathematical Society, New York, 1948. MR 0025077 | Zbl 0392.46001
[Ho] Hoischen L.: Eine Verschärfung eines Approximationssatzes von Carleman. (German), J. Approx. Theory 9 (1973), no. 3, 272–277. DOI 10.1016/0021-9045(73)90093-2 | MR 0367217 | Zbl 0271.30035
[K] Kaplan W.: Approximation by entire functions. Michigan Math. J. 3 (1955), no. 1, 43–52. DOI 10.1307/mmj/1031710533 | MR 0070753 | Zbl 0070.06203
[N] Nersesyan A.: On Carleman sets. Amer. Math. Soc. Transl. Ser. 2 122 (1984), 99–104. Zbl 0552.30029
[S] Scheinberg S.: Uniform approximation by entire functions. J. Analyse Math. 29 (1976), 16–18. DOI 10.1007/BF02789974 | MR 0508100 | Zbl 0343.41022
[W] Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. DOI 10.1090/S0002-9947-1934-1501735-3 | MR 1501735 | Zbl 0008.24902
Partner of
EuDML logo