[1] Ainouz, A.:
Homogenized double porosity models for poro-elastic media with interfacial flow barrier. Math. Bohem. 136 (2011), 357-365.
MR 2985545 |
Zbl 1249.35016
[2] Ainouz, A.:
Homogenization of a double porosity model in deformable media. Electron. J. Differ. Equ. (electronic only) 2013 (2013), 1-18.
MR 3065043 |
Zbl 1288.35038
[4] Allaire, G., Damlamian, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. Proc. Int. Conference on Mathematical Modelling of Flow Through Porous Media, 1995 A. Bourgeat et al. World Scientific Pub., Singapore (1996), 15-25.
[5] T. Arbogast, J. Douglas, Jr., U. Hornung:
Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823-836.
DOI 10.1137/0521046 |
MR 1052874 |
Zbl 0698.76106
[6] Bensoussan, A., Lions, J.-L., Papanicolaou, G.:
Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications 5 North-Holland Publ. Company, Amsterdam (1978).
MR 0503330 |
Zbl 0404.35001
[8] Deresiewicz, H., Skalak, R.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Amer. 53 (1963), 783-788.
[10] Rohan, E., Naili, S., Cimrman, R., Lemaire, T.:
Multiscale modeling of a fluid saturated medium with double porosity: relevance to the compact bone. J. Mech. Phys. Solids 60 (2012), 857-881.
DOI 10.1016/j.jmps.2012.01.013 |
MR 2899232
[11] Sanchez-Palencia, E.:
Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127 Springer, Berlin (1980).
Zbl 0432.70002