Previous |  Up |  Next

Article

Keywords:
chemotaxis; global existence; boundedness
Summary:
This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function $\chi (v)$ and the growth term $f(u)$ under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that $0< \chi (v)\leq {{\chi }_0}/{v^k}$ $(k\geq 1$, ${\chi }_0>0)$ and $\lambda _1-\mu _1 u \leq f(u)\leq \lambda _2-\mu _2 u$ $(\lambda _1,\lambda _2,\mu _1,\mu _2>0)$. It is shown that if $\chi _0$ is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.
References:
[1] Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999), 347-359. MR 1690388 | Zbl 0941.35009
[2] Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715-743. MR 1657160 | Zbl 0913.35021
[3] Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. (to appear) in Math. Methods Appl. Sci. DOI:10.1002/mma.3149. DOI 10.1002/mma.3149
[4] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. DOI 10.1007/s00285-008-0201-3 | MR 2448428 | Zbl 1161.92003
[5] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equations 215 (2005), 52-107. DOI 10.1016/j.jde.2004.10.022 | MR 2146345 | Zbl 1085.35065
[6] Keller, E. F., Segel, L. A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30 (1971), 235-248. DOI 10.1016/0022-5193(71)90051-8 | Zbl 1170.92308
[7] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. DOI 10.1016/0022-5193(70)90092-5 | Zbl 1170.92306
[8] Manásevich, R., Phan, Q. H., Souplet, P.: Global existence of solutions for a chemotaxis-type system arising in crime modelling. Eur. J. Appl. Math. 24 (2013), 273-296. DOI 10.1017/S095679251200040X | MR 3031780 | Zbl 1284.35445
[9] Mu, C., Wang, L., Zheng, P., Zhang, Q.: Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system. Nonlinear Anal., Real World Appl. 14 (2013), 1634-1642. MR 3004526 | Zbl 1261.35072
[10] Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 145-156. MR 1623326 | Zbl 0902.35010
[11] Negreanu, M., Tello, J. I.: On a parabolic-elliptic chemotactic system with non-constant chemotactic sensitivity. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 80 (2013), 1-13. DOI 10.1016/j.na.2012.12.004 | MR 3010749 | Zbl 1260.35238
[12] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis- growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 119-144. DOI 10.1016/S0362-546X(01)00815-X | MR 1915744 | Zbl 1005.35023
[13] Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in $\mathbb R^2$. Adv. Math. Sci. Appl. 12 (2002), 587-606. MR 1943982
[14] Othmer, H. G., Stevens, A.: Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks. SIAM J. Appl. Math. 57 (1997), 1044-1081. DOI 10.1137/S0036139995288976 | MR 1462051 | Zbl 0990.35128
[15] Sleeman, B. D., Levine, H. A.: Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century Math. Methods Appl. Sci. 24 (2001), 405-426. DOI 10.1002/mma.212 | MR 1821934 | Zbl 0990.35014
[16] Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal., Real World Appl. 12 (2011), 3727-3740. MR 2833007 | Zbl 1268.35072
[17] Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34 (2011), 176-190. DOI 10.1002/mma.1346 | MR 2778870 | Zbl 1291.92018
[18] Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachr. 283 (2010), 1664-1673. DOI 10.1002/mana.200810838 | MR 2759803 | Zbl 1205.35037
[19] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equations 35 (2010), 1516-1537. DOI 10.1080/03605300903473426 | MR 2754053 | Zbl 1290.35139
Partner of
EuDML logo