[1] Biler, P.:
Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999), 347-359.
MR 1690388 |
Zbl 0941.35009
[2] Biler, P.:
Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 715-743.
MR 1657160 |
Zbl 0913.35021
[3] Fujie, K., Winkler, M., Yokota, T.:
Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity. (to appear) in Math. Methods Appl. Sci. DOI:10.1002/mma.3149.
DOI 10.1002/mma.3149
[9] Mu, C., Wang, L., Zheng, P., Zhang, Q.:
Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system. Nonlinear Anal., Real World Appl. 14 (2013), 1634-1642.
MR 3004526 |
Zbl 1261.35072
[10] Nagai, T., Senba, T.:
Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8 (1998), 145-156.
MR 1623326 |
Zbl 0902.35010
[12] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.:
Exponential attractor for a chemotaxis- growth system of equations. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51 (2002), 119-144.
DOI 10.1016/S0362-546X(01)00815-X |
MR 1915744 |
Zbl 1005.35023
[13] Osaki, K., Yagi, A.:
Global existence for a chemotaxis-growth system in $\mathbb R^2$. Adv. Math. Sci. Appl. 12 (2002), 587-606.
MR 1943982
[15] Sleeman, B. D., Levine, H. A.:
Partial differential equations of chemotaxis and angiogenesis. Applied mathematical analysis in the last century Math. Methods Appl. Sci. 24 (2001), 405-426.
DOI 10.1002/mma.212 |
MR 1821934 |
Zbl 0990.35014
[16] Stinner, C., Winkler, M.:
Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal., Real World Appl. 12 (2011), 3727-3740.
MR 2833007 |
Zbl 1268.35072