Previous |  Up |  Next

Article

Keywords:
nonholonomic mechanical systems; nonholonomic constraint submanifold; canonical distribution; reduced equations of motion; symmetries of nonholonomic systems; conservation laws; Chaplygin sleigh
Summary:
In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory and the equations of symmetries and conservation laws derived within this framework we present the Chaplygin sleigh. It is a mechanical system subject to one linear nonholonomic constraint enforcing the plane motion. We describe the trajectories of the Chaplygin sleigh and show that the usual kinetic energy conservation law holds along them, the time translation generator being the corresponding constraint symmetry and simultaneously the symmetry of nonholonomic equations of motion. Moreover, the expressions for two other currents are obtained. Remarkably, the corresponding constraint symmetries are not symmetries of nonholonomic equations of motion. The physical interpretation of results is emphasized.
References:
[1] Bahar, L.Y.: A unified approach to non-holonomic dynamics. Int. J. Non-Linear Mech., 35, 2000, 613-625, DOI 10.1016/S0020-7462(99)00045-1 | MR 1761376
[2] Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E.: Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24. 2003, Springer Science + Business Media, LLC, MR 1978379
[3] Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems, Texts in Applied Mathematics 49. 2005, Springer Science + Business Media, Inc., New York, DOI 10.1007/978-1-4899-7276-7_4 | MR 2099139
[4] Cantrijn, F.: Vector fields generating invariants for classical dissipative systems. J. Math. Phys., 23, 1982, 1589-1595, DOI 10.1063/1.525569 | MR 0668100 | Zbl 0496.70032
[5] Čech, M., Musilová, J.: Symmetries and conservation laws for Chaplygin sleigh. Balkan J. Geom. Appl. Submitted..
[6] Chetaev, N.G.: On the Gauss principle. Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian).
[7] Monforte, J. Cortés: Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793. 2002, Springer, Berlin, DOI 10.1007/b84020 | MR 1942617
[8] Czudková, L., Musilová, J.: A practical application of the geometrical theory on fibred manifolds to a planimeter motion. Int. J. Non-Linear Mech., 50, 2012, 19-24.
[9] León, M. de, Marrero, J.C., Diego, D. Martín de: Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.). DOI 10.3934/jgm.2010.2.159 | MR 2660714
[10] Janová, J., Musilová, J.: Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion. Int. J. Non-Linear Mech., 44, 2009, 98-105, DOI 10.1016/j.ijnonlinmec.2008.09.002 | Zbl 1203.70036
[11] Janová, J., Musilová, J.: The streetboard rider: an appealing problem in non-holonomic mechanics. Eur. J. Phys., 31, 2010, 333-345, DOI 10.1088/0143-0807/31/2/011
[12] Janová, J., Musilová, J.: Coupled rolling motion: considering rolling friction in non-holonomic mechanics. Eur. J. Phys., 32, 2011, 257-269, DOI 10.1088/0143-0807/32/1/023
[13] Janová, J., Musilová, J., Bartoš, J.: Coupled rolling motion: a student project in non-holonomic mechanics. Eur. J. Phys., 30, 2010, 1257-1269, DOI 10.1088/0143-0807/30/6/005
[14] Krupková, O.: Mechanical systems with nonholonomic constraints. J. Math. Phys., 38, 1997, 5098-5126, DOI 10.1063/1.532196 | MR 1471916
[15] Krupková, O.: Higher order mechanical systems with nonholonomic constraints. J. Math. Phys., 41, 2000, 5304-5324, DOI 10.1063/1.533411 | MR 1770957
[16] Krupková, O.: Recent results in the geometry of constrained systems. Rep. Math. Phys., 49, 2002, 269-278, DOI 10.1016/S0034-4877(02)80025-8 | MR 1915806 | Zbl 1018.37041
[17] Krupková, O.: Variational metric structures. Publ. Math. Debrecen, 62, 3–4, 2003, 461-495, MR 2008109 | Zbl 1026.53041
[18] Krupková, O.: Noether Theorem, 90 years on. XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics,
[19] Krupková, O.: The nonholonomic variational principle. J. Phys. A: Math. Theor., 42, 2009, 185201 (40pp). DOI 10.1088/1751-8113/42/18/185201 | MR 2591195 | Zbl 1198.70008
[20] Krupková, O.: The geometric mechanics on nonholonomic submanifolds. Comm. Math., 18, 2010, 51-77, MR 2848506
[21] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints. J. Phys. A: Math. Gen., 34, 2001, 3859-3875, DOI 10.1088/0305-4470/34/18/313 | MR 1840850
[22] Krupková, O., Musilová, J.: Nonholonomic variational systems. Rep. Math. Phys., 55, 2, 2005, 211-220, DOI 10.1016/S0034-4877(05)80028-X | MR 2139585 | Zbl 1134.37356
[23] Massa, E., Pagani, E.: Classical mechanics of non-holonomic systems: a geometric approach. Ann. Inst. Henri Poincaré, 55, 1991, 511-544, MR 1130215
[24] Massa, E., Pagani, E.: A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré, 66, 1997, 1-36, MR 1434114 | Zbl 0878.70009
[25] Mráz, M., Musilová, J.: Variational compatibility of force laws in mechanics. Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno, MR 1712786
[26] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. 1972, American Mathematical Society, Rhode Island,
[27] Novotný, J.: On the inverse variational problem in the classical mechanics. Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague, MR 0663225
[28] Popescu, P., Ida, Ch.: Nonlinear constraints in nonholonomic mechanics. arXiv: submit/1026356 [marh-ph] 20 Jul 2014.. MR 3294222
[29] Roithmayr, C.M., Hodges, D.H.: Forces associated with non-linear non-holonomic constraint equations. Int. J. Non-Linear Mech., 45, 2010, 357-369, DOI 10.1016/j.ijnonlinmec.2009.12.009
[30] Rossi, O., Musilová, J.: On the inverse variational problem in nonholonomic mechanics. Comm. Math., 20, 1, 2012, 41-62, MR 3001631 | Zbl 1271.49027
[31] Rossi, O., Musilová, J.: The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles. J. Phys A: Math. Theor., 45, 2012, 255202. MR 2930485
[32] Rossi, O., Paláček, R.: On the Zermelo problem in Riemannian manifolds. Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81, MR 2911969
[33] Sarlet, W., Cantrijn, F.: Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics. Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno, MR 0793214
[34] Sarlet, W., Cantrijn, F., Saunders, D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A: Math. Gen., 28, 1995, 3253-3268, DOI 10.1088/0305-4470/28/11/022 | MR 1344117 | Zbl 0858.70013
[35] Sarlet, W., Saunders, D.J., Cantrijn, F.: A geometrical framework for the study of non-holonomic Lagrangian systems II. J. Phys. A: Math. Gen., 29, 1996, 4265-4274, DOI 10.1088/0305-4470/29/14/042 | MR 1406933 | Zbl 0900.70196
[36] Sarlet, W., Saunders, D.J., Cantrijn, F.: Adjoint symmetries and the generation of first integrals in non-holonomic mechanics. Journal of Geometry and Physics, 55, 2005, 207-225, DOI 10.1016/j.geomphys.2004.12.006 | MR 2157043 | Zbl 1093.37026
[37] Swaczyna, M.: Several examples of nonholonomic mechanical systems. Comm. Math., 19, 2011, 27-56, MR 2855390
[38] Swaczyna, M., Volný, P.: Uniform projectile motion: Dynamics, symmetries and conservation laws. Rep. Math. Phys., 73, 2, 2014, 177-200, DOI 10.1016/S0034-4877(14)60039-2 | MR 3285508 | Zbl 1308.70017
[39] Udwadia, F.E.: Equations of motion for mechanical systems: A unified approach. Int. J. Non-Linear Mech., 31, 1996, 951-958, DOI 10.1016/S0020-7462(96)00116-3 | Zbl 0891.70010
[40] Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech., 37, 2002, 1079-1090, DOI 10.1016/S0020-7462(01)00033-6 | MR 1897289
Partner of
EuDML logo