[2] Bloch, A.M., Baillieul, (with the collaboration of J., Marsden), P.E. Crouch and J.E.:
Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics 24. 2003, Springer Science + Business Media, LLC,
MR 1978379
[5] Čech, M., Musilová, J.: Symmetries and conservation laws for Chaplygin sleigh. Balkan J. Geom. Appl. Submitted..
[6] Chetaev, N.G.: On the Gauss principle. Izv. Kazan Fiz.-Mat. Obsc., 6, 1932–1933, 323-326, (in Russian).
[7] Monforte, J. Cortés:
Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793. 2002, Springer, Berlin,
DOI 10.1007/b84020 |
MR 1942617
[8] Czudková, L., Musilová, J.: A practical application of the geometrical theory on fibred manifolds to a planimeter motion. Int. J. Non-Linear Mech., 50, 2012, 19-24.
[9] León, M. de, Marrero, J.C., Diego, D. Martín de:
Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech., 2, 2010, 159-198, (See also arXiv: 0801.4358v3 [mat-ph] 13 Nov 2009.).
DOI 10.3934/jgm.2010.2.159 |
MR 2660714
[11] Janová, J., Musilová, J.:
The streetboard rider: an appealing problem in non-holonomic mechanics. Eur. J. Phys., 31, 2010, 333-345,
DOI 10.1088/0143-0807/31/2/011
[12] Janová, J., Musilová, J.:
Coupled rolling motion: considering rolling friction in non-holonomic mechanics. Eur. J. Phys., 32, 2011, 257-269,
DOI 10.1088/0143-0807/32/1/023
[13] Janová, J., Musilová, J., Bartoš, J.:
Coupled rolling motion: a student project in non-holonomic mechanics. Eur. J. Phys., 30, 2010, 1257-1269,
DOI 10.1088/0143-0807/30/6/005
[15] Krupková, O.:
Higher order mechanical systems with nonholonomic constraints. J. Math. Phys., 41, 2000, 5304-5324,
DOI 10.1063/1.533411 |
MR 1770957
[17] Krupková, O.:
Variational metric structures. Publ. Math. Debrecen, 62, 3–4, 2003, 461-495,
MR 2008109 |
Zbl 1026.53041
[18] Krupková, O.: Noether Theorem, 90 years on. XVII. International Fall Workshop, 2009, 159-170, American Institute of Physics,
[20] Krupková, O.:
The geometric mechanics on nonholonomic submanifolds. Comm. Math., 18, 2010, 51-77,
MR 2848506
[23] Massa, E., Pagani, E.:
Classical mechanics of non-holonomic systems: a geometric approach. Ann. Inst. Henri Poincaré, 55, 1991, 511-544,
MR 1130215
[24] Massa, E., Pagani, E.:
A new look at classical mechanics of constrained systems. Ann. Inst. Henri Poincaré, 66, 1997, 1-36,
MR 1434114 |
Zbl 0878.70009
[25] Mráz, M., Musilová, J.:
Variational compatibility of force laws in mechanics. Differential Geometry and its Applications, 1999, 553-560, Masaryk Univ., Brno,
MR 1712786
[26] Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. 1972, American Mathematical Society, Rhode Island,
[27] Novotný, J.:
On the inverse variational problem in the classical mechanics. Proc. Conf. on Diff. Geom. and Its Appl. 1980, 1981, 189-195, Universita Karlova, Prague,
MR 0663225
[28] Popescu, P., Ida, Ch.:
Nonlinear constraints in nonholonomic mechanics. arXiv: submit/1026356 [marh-ph] 20 Jul 2014..
MR 3294222
[29] Roithmayr, C.M., Hodges, D.H.:
Forces associated with non-linear non-holonomic constraint equations. Int. J. Non-Linear Mech., 45, 2010, 357-369,
DOI 10.1016/j.ijnonlinmec.2009.12.009
[30] Rossi, O., Musilová, J.:
On the inverse variational problem in nonholonomic mechanics. Comm. Math., 20, 1, 2012, 41-62,
MR 3001631 |
Zbl 1271.49027
[31] Rossi, O., Musilová, J.:
The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles. J. Phys A: Math. Theor., 45, 2012, 255202.
MR 2930485
[32] Rossi, O., Paláček, R.:
On the Zermelo problem in Riemannian manifolds. Balkan Journal of Geometry and Its Applications, 17, 2, 2012, 77-81,
MR 2911969
[33] Sarlet, W., Cantrijn, F.:
Special symmetries for Lagrangian systems snd their analogues in nonconservative mechanics. Difrerential Geometry and its Applications. Proc. Conf. Nové Město na Moravě, Czechoslovakia, September 1983, 1984, 247-260, J.E. Purkyně University, Brno,
MR 0793214
[37] Swaczyna, M.:
Several examples of nonholonomic mechanical systems. Comm. Math., 19, 2011, 27-56,
MR 2855390