Previous |  Up |  Next

Article

Keywords:
stochastic programming; scenario generation; moment matching; distribution functions; service network design
Summary:
In this paper, we present a method for generating scenarios for two-stage stochastic programs, using multivariate distributions specified by their marginal distributions and the correlation matrix. The margins are described by their cumulative distribution functions and we allow each margin to be of different type. We demonstrate the method on a model from stochastic service network design and show that it improves the stability of the scenario-generation process, compared to both sampling and a method that matches moments and correlations.
References:
[1] Birge, J. R., Louveaux, F.: Introduction to stochastic programming. Springer-Verlag, New York 1997. MR 1460264 | Zbl 1223.90001
[2] Dupačov{á}, J., Consigli, G., Wallace, S. W.: Scenarios for multistage stochastic programs. Ann. Oper. Res. 100 (2000), 1 - 4, 25-53. DOI: 10.1023/A:1019206915174. DOI 10.1023/A:1019206915174 | MR 1843534 | Zbl 1017.90068
[3] Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Math. Programming 95 (2003), 3, 493-511. DOI: 10.1007/s10107-002-0331-0. DOI 10.1007/s10107-002-0331-0 | MR 1969762
[4] Fleten, S.-E., Pettersen, E.: Constructing bidding curves for a price-taking retailer in the norwegian electricity market. IEEE Trans. Power Systems 20 (2005), 2, 701-708. DOI: 10.1109/TPWRS.2005.846082. DOI 10.1109/TPWRS.2005.846082
[5] Geyer, A., Hanke, M., Weissensteiner, A.: No-arbitrage conditions, scenario trees, and multi-asset financial optimization. European J. Oper. Res. 206 (2010), 3, 609-613. DOI: 10.1016/j.ejor.2010.03.022. DOI 10.1016/j.ejor.2010.03.022 | MR 2639407 | Zbl 1188.91242
[6] Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24 (2003), 2 - 3, 187-206. DOI: 10.1023/A:1021805924152. DOI 10.1023/A:1021805924152 | MR 1969152 | Zbl 1094.90024
[7] Heitsch, H., Römisch, W.: Scenario tree modelling for multistage stochastic programs. Math. Programming 118 (2009), 2, 371-406. DOI: 10.1007/s10107-007-0197-2. DOI 10.1007/s10107-007-0197-2 | MR 2470797
[8] Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. SIAM J. Optim. 17 (2006), 2, 511-525. DOI: 10.1137/050632865. DOI 10.1137/050632865 | MR 2247749 | Zbl 1165.90582
[9] Henrion, R., Küchler, C., Römisch, W.: Scenario reduction in stochastic programming with respect to discrepancy distances. Comput. Optim. Appl. 43 (2009), 1, 67-93. DOI: 10.1007/s10589-007-9123-z. DOI 10.1007/s10589-007-9123-z | MR 2501045 | Zbl 1178.90258
[10] Høyland, K., Wallace, S. W.: Generating scenario trees for multistage decision problems. Management Sci. 47 (2001), 2, 295-307. DOI: 10.1023/A:1021853807313. DOI 10.1287/mnsc.47.2.295.9834 | Zbl 1232.91132
[11] Høyland, K., Kaut, M., Wallace, S. W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24 (2003), 2 - 3, 169-185. DOI 10.1023/A:1021853807313 | MR 1969151 | Zbl 1094.90579
[12] Kall, P., Wallace, S. W.: Stochastic Programming. John Wiley and Sons, Chichester 1994. MR 1315300 | Zbl 0812.90122
[13] Kaut, M., Wallace, S. W.: Evaluation of scenario-generation methods for stochastic programming. Pacific J. Optim. 3 (2007), 2, 257-271. MR 2325324 | Zbl 1171.90490
[14] Kaut, M., Wallace, S. W.: Shape-based scenario generation using copulas. Comput. Management Sci. 8 (2011), 1 - 2, 181-199. DOI: 10.1007/s10287-009-0110-y. DOI 10.1007/s10287-009-0110-y | MR 2782429
[15] Lium, A.-G., Kaut, M.: Scenario generation for obtaining sound solutions. In: Stochastic Service Network Design 2 (2006), Chapter 4.
[16] Mak, W., Morton, D., Wood, R.: Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper. Res. Letters 24 (1999), 47-56. DOI 10.1016/S0167-6377(98)00054-6 | MR 1683170
[17] Okunev, J., White, D. R.: Moment matching for the masses. Available at SSRN: http://ssrn.com/abstract=921451, 2006.
[18] Pflug, G. C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Programming 89 (2001), 2, 251-271. DOI: 10.1007/PL00011398. DOI 10.1007/PL00011398 | MR 1816503
[19] Schütz, P., Tomasgard, A.: The impact of flexibility on operational supply chain planning. Int. J. Production Economics 134 (2011), 2, 300-311. DOI: 10.1016/j.ijpe.2009.11.004. DOI 10.1016/j.ijpe.2009.11.004
[20] Schütz, P., Tomasgard, A., Ahmed, S.: Supply chain design under uncertainty using sample average approximation and dual decomposition. European J. Oper. Res. 199 (2009), 2 409-419. DOI: 10.1016/j.ejor.2008.11.040. DOI 10.1016/j.ejor.2008.11.040 | Zbl 1176.90447
[21] Thapalia, B. K., Crainic, T. G., Kaut, M., Wallace, S. W.: Single-commodity stochastic network design with multiple sources and sinks. Inform. Systems Oper. Res. 49 (2011), 3, 193-211. DOI: 10.3138/infor.49.3.003. DOI 10.3138/infor.49.3.193 | MR 2934282
[22] Topaloglou, N., Vladimirou, H., Zenios, S. A.: A dynamic stochastic programming model for international portfolio management. European J. Oper. Res. 185 (2008), 3, 1501-1524. DOI: 10.1016/j.ejor.2005.07.035. DOI 10.1016/j.ejor.2005.07.035 | MR 2361764 | Zbl 1129.90041
[23] Werner, A., Uggen, K. T., Fodstad, M., Lium, A.-G., Egging, R.: Stochastic mixed-integer programming for integrated portfolio planning in the LNG supply chain. The Energy J. 35 (2014), 1. DOI:10.5547/01956574.35.1.5. DOI 10.5547/01956574.35.1.5
Partner of
EuDML logo