Previous |  Up |  Next

Article

Keywords:
Choquet expectation; monotone probability; exponential inequality; a strong law of large numbers
Summary:
An exponential inequality for Choquet expectation is discussed. We also obtain a strong law of large numbers based on Choquet expectation. The main results of this paper improve some previous results obtained by many researchers.
References:
[1] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1954), 131-295. DOI 10.5802/aif.53 | MR 0080760 | Zbl 0679.01011
[2] Denneberg, D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994. MR 1320048 | Zbl 0968.28009
[3] Dvoretzky, A.: On the strong stability of a sequence of events. Ann. Math. Statist. 20 (1949), 2, 296-299. DOI 10.1214/aoms/1177730039 | MR 0031675 | Zbl 0033.38402
[4] Kim, T. S., Kim, H. C.: On the exponential inequality for negatively dependent sequence. Korean Math. Soc. Commun. 22 (2007), 2, 315-321. DOI 10.4134/CKMS.2007.22.2.315 | MR 2313454
[5] Lehmann, E.: Some concepts of dependence. Ann. Math. Statist. 37 (1966), 1137-1153. DOI 10.1214/aoms/1177699260 | MR 0202228 | Zbl 0146.40601
[6] Li, J., Yasuda, M., Jiang, Q., Suzuki, H., Wang, Z., Klir, G. J.: Convergence of sequence of measurable functions on fuzzy measure spaces. Fuzzy Sets and Systems 87 (1997), 317-323. MR 1449484 | Zbl 0915.28014
[7] Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46 (2010), 1098-1107. MR 2797430 | Zbl 1210.28025
[8] Nooghabi, H. J., Azarnoosh, H. A.: Exponential inequality for negatively associated random variables. Statist. Papers 50 (2009), 419-428. DOI 10.1007/s00362-007-0081-4 | MR 2476199 | Zbl 1247.60039
[9] Oliveira, P. D.: An exponential inequality for associated variables. Statist. Probab. Lett. 73 (2005), 189-197. DOI 10.1016/j.spl.2004.11.023 | MR 2159254 | Zbl 1070.60019
[10] Pap, E.: Null-additive Set Functions. Kluwer, Dordrecht 1995. MR 1368630 | Zbl 1265.28002
[11] Petrov, V. V.: Sums of Independent Random Variables. Springer-Verlag, Berlin 1975. MR 0388499 | Zbl 1125.60024
[12] Varošanec, S.: On h-convexity. J. Math. Anal. Appl. 326 (2007), 303-311. DOI 10.1016/j.jmaa.2006.02.086 | MR 2277784 | Zbl 1111.26015
[13] Wang, X., Hu, S., Shen., A., Yang, W.: An exponential inequality for a NOD sequence and a strong law of large numbers. Appl. Math. Lett. 24 (2011), 219-223. DOI 10.1016/j.aml.2010.09.007 | MR 2735145
[14] Wang, Z., Klir, G. J.: Generalized Measure Theory. Springer, New York 2009. MR 2453907 | Zbl 1184.28002
[15] Xing, G., Yang, S.: An exponential inequality for strictly stationary and negatively associated random variables. Commun. Statistics-Theory and Methods 39 (2010), 340-349. DOI 10.1080/03610920902750053 | MR 2654882 | Zbl 1187.60022
[16] Xing, G. D., Yang, S. C., Liu, A. L., Wang, X. P.: A remark on the exponential inequality for negatively associated random variables. J. Korean Statist. Soc. 38 (2009), 53-57. DOI 10.1016/j.jkss.2008.06.005 | MR 2492379 | Zbl 1293.60042
Partner of
EuDML logo