Previous |  Up |  Next

Article

Keywords:
phase space; gravitational contact phase structure; gravitational Jacobi phase structure; infinitesimal symmetry; hidden symmetry; Killing multivector field
Summary:
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give the explicit description of such hidden symmetries.
References:
[1] Crampin, M.: Hidden symmetries and Killing tensors. Reports Math. Phys. 20 (1984), 31–40. DOI 10.1016/0034-4877(84)90069-7 | MR 0761328 | Zbl 0551.58019
[2] de Leon, M., Tuynman, G.M.: A universal model for cosymplectic manifolds. J. Geom. Phys. 20 (1996), 77–86. DOI 10.1016/0393-0440(96)00047-2 | MR 1407405 | Zbl 0861.53026
[3] Gielen, S., Wise, D.K.: Lifting general relativity to observer space. J. Math. Phys. 54 (2013), 29pp., 052501. DOI 10.1063/1.4802878 | MR 3098929 | Zbl 1285.83005
[4] Iwai, T.: Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. MR 0434248 | Zbl 0339.53039
[5] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140.
[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020. DOI 10.1142/S0219887814600202 | MR 3249642
[7] Janyška, J., Modugno, M.: Classical particle phase space in general relativity. Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602. MR 1406377 | Zbl 0862.53024
[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space. Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI 10.1142/S021988780800303X | MR 2445392 | Zbl 1160.53008
[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds. J. Math. Pures Appl. 9 (2009), 211–232. DOI 10.1016/j.matpur.2008.09.007 | MR 2498755 | Zbl 1163.53051
[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales. Acta Appl. Math. 110 (2010), 1249–1276. DOI 10.1007/s10440-009-9505-6 | MR 2639169 | Zbl 1208.15021
[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space. J. Phys. A: Math. Theor. 45 (2012), 28pp., 485205. DOI 10.1088/1751-8113/45/48/485205 | MR 2998421
[12] Libermann, P., Marle, Ch.M.: Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht, 1987. MR 0882548 | Zbl 0643.53002
[13] Lichnerowicz, A.: Les varietés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 57 (1978), 453–488. MR 0524629 | Zbl 0407.53025
[14] Manno, G., Vitolo, R.: Relativistic mechanics, contact manifolds and symmetries. Note Mat. 23 (2004/2005), 157–171. MR 2141115
[15] Michor, P.W., Dubois-Violette, M.: A common generalization of the Frölicher–Nijenhuis bracket and the Schouten bracket for symmetric multivector fields. Indagationes Math. N.S. 6 (1995), 51–66. DOI 10.1016/0019-3577(95)98200-U | MR 1324437 | Zbl 0844.58002
[16] Olver, P.: Applications of Lie groups to differential equations. Graduate Texts in Mathematics, vol. 107, Springer, 1986. DOI 10.1007/978-1-4684-0274-2_2 | MR 0836734 | Zbl 0588.22001
[17] Schouten, J.A.: Ueber Differentialkomitanten zweier kontravarianter Grössen. Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170. MR 0003326
[18] Sommers, P.: On Killing tensors and constant of motions. J. Math. Phys. 14 (1973), 787–790. DOI 10.1063/1.1666395 | MR 0329558
[19] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel-Boston-Berlin, 1994. MR 1269545 | Zbl 0810.53019
[20] Vinogradov, A.M.: An informal introduction to the geometry of jet spaces. Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333. MR 1122861
[21] Vitolo, R.: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51 (2000), 119–133. DOI 10.1023/A:1007624902983 | MR 1774641 | Zbl 0977.83009
[22] Woodhouse, N.M.J.: Killing tensors and the separation of the Hamilton-Jacobi equation. Commun. Math. Phys. 44 (1975), 9–38. DOI 10.1007/BF01609055 | MR 0406368 | Zbl 0309.58012
Partner of
EuDML logo