[4] Iwai, T.:
Symmetries in relativistic dynamics of a charged particle. Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343.
MR 0434248 |
Zbl 0339.53039
[5] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity. AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2012, pp. 135–140.
[6] Janyška, J.:
Special bracket versus Jacobi bracket on the classical phase space of general relativistic test particle. Int. J. Geom. Methods Mod. Phys. 11 (2014), 31pp., 1460020.
DOI 10.1142/S0219887814600202 |
MR 3249642
[7] Janyška, J., Modugno, M.:
Classical particle phase space in general relativity. Differential Geometry and Applications, Proc. Conf., Aug. 28 – Sept. 1, 1995, Brno, Czech Republic, Masaryk University, Brno, 1996, pp. 573–602.
MR 1406377 |
Zbl 0862.53024
[12] Libermann, P., Marle, Ch.M.:
Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht, 1987.
MR 0882548 |
Zbl 0643.53002
[13] Lichnerowicz, A.:
Les varietés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 57 (1978), 453–488.
MR 0524629 |
Zbl 0407.53025
[14] Manno, G., Vitolo, R.:
Relativistic mechanics, contact manifolds and symmetries. Note Mat. 23 (2004/2005), 157–171.
MR 2141115
[17] Schouten, J.A.:
Ueber Differentialkomitanten zweier kontravarianter Grössen. Nederl. Akad. Wetensch., Proc. 43 (1940), 1160–1170.
MR 0003326
[19] Vaisman, I.:
Lectures on the Geometry of Poisson Manifolds. Birkhäuser Verlag, Basel-Boston-Berlin, 1994.
MR 1269545 |
Zbl 0810.53019
[20] Vinogradov, A.M.:
An informal introduction to the geometry of jet spaces. Rend. Seminari Fac. Sci. Univ. Cagliari 48 (1988), 301–333.
MR 1122861