Previous |  Up |  Next

Article

Keywords:
stereographic; conformal circles; compactification
Summary:
The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.
References:
[1] Bailey, T.N., Eastwood, M.G.: Conformal circles and parametrizations of curves in conformal manifolds. Proc. Amer. Math. Soc. 108 (1990), 215–221. DOI 10.1090/S0002-9939-1990-0994771-7 | MR 0994771 | Zbl 0684.53016
[2] Cartan, É.: Les espaces à connexion conforme. Ann. Soc. Polon. Math. (1923), 171–221.
[3] Francès, C.: Rigidity at the boundary for conformal structures and other Cartan geometries. arXiv:0806:1008.
[4] Francès, C.: Sur le groupe d’automorphismes des géométries paraboliques de rang 1. Ann. Sci. École Norm. Sup. 40 (2007), 741–764. MR 2382860 | Zbl 1135.53016
[5] The Maple program: http://www.maplesoft.com</b> ple program: http://www.maplesoft.com
[6] Tod, K.P.: Some examples of the behaviour of conformal geodesics. J. Geom. Phys. 62 (2012), 1778–1792. DOI 10.1016/j.geomphys.2012.03.010 | MR 2925827 | Zbl 1245.53042
[7] Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland 1957. MR 0088769 | Zbl 0077.15802
Partner of
EuDML logo