Previous |  Up |  Next

Article

Keywords:
integral octonion; 24-cell; Gosset polytope
Summary:
We study the integral quaternions and the integral octonions along the combinatorics of the $24$-cell, a uniform polytope with the symmetry $D_{4}$, and the Gosset polytope $4_{21}$ with the symmetry $E_{8}$. We identify the set of the unit integral octonions or quaternions as a Gosset polytope $4_{21}$ or a $24$-cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the $E_{8}$ or $D_{4}$ actions on the $4_{21}$ or the $24$-cell, respectively. Moreover, we show that each level set in the unit integral numbers forms a uniform polytope, and we explain the dualities between them. In particular, the set of the pure unit integral octonions is identified as a uniform polytope $2_{31}$ with the symmetry $E_{7}$, and it is a dual polytope to a Gosset polytope $3_{21}$ with the symmetry $E_{7}$ which is the set of the unit integral octonions with $\operatorname {Re}=1/2$.
References:
[1] Baez, J. C.: The octonions. Bull. Am. Math. Soc., New. Ser. 39 (2002), 145-205 errata ibid. 42 (2005), 213. DOI 10.1090/S0273-0979-01-00934-X | MR 1886087
[2] Conway, J. H., Smith, D. A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A K Peters Natick (2003). MR 1957212 | Zbl 1098.17001
[3] Coxeter, H. S. M.: Integral Cayley numbers. Duke Math. J. 13 (1946), 561-578. DOI 10.1215/S0012-7094-46-01347-6 | MR 0019111 | Zbl 0063.01004
[4] Coxeter, H. S. M.: Regular and semi-regular polytopes II. Math. Z. 188 (1985), 559-591. DOI 10.1007/BF01161657 | MR 0774558 | Zbl 0547.52005
[5] Coxeter, H. S. M.: Regular and semi-regular polytopes III. Math. Z. 200 (1988), 3-45. MR 0972395 | Zbl 0633.52006
[6] Coxeter, H. S. M.: Regular Complex Polytopes. 2nd ed. Cambridge University Press New York (1991). MR 1119304 | Zbl 0732.51002
[7] Coxeter, H. S. M.: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd. 9 (1991), 233-248. MR 1166143 | Zbl 0759.20013
[8] Koca, M.: $E_8$ lattice with icosians and $Z_5$ symmetry. J. Phys. A, Math. Gen. 22 (1989), 4125-4134. DOI 10.1088/0305-4470/22/19/007 | MR 1016766
[9] Koca, M., Koç, R.: Automorphism groups of pure integral octonions. J. Phys. A, Math. Gen. 27 (1994), 2429-2442. DOI 10.1088/0305-4470/27/7/021 | MR 1279958 | Zbl 0835.22006
[10] Koca, M., Ozdes, N.: Division algebras with integral elements. J. Phys. A, Math. Gen. 22 (1989), 1469-1493. DOI 10.1088/0305-4470/22/10/006 | MR 1003076 | Zbl 0686.22005
[11] Lee, J.-H.: Configurations of lines in del Pezzo surfaces with Gosset polytopes. Trans. Amer. Math. Soc. 366 (2014), 4939-4967. DOI 10.1090/S0002-9947-2014-06098-4 | MR 3217705
[12] Lee, J.-H.: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123-150. DOI 10.4153/CJM-2011-063-6 | MR 2932172 | Zbl 1268.14038
Partner of
EuDML logo