[1] Backlund, R.: Sur les zéros de la fonction $\zeta (s)$ de Riemann. C. R. Acad. Sci. Paris 158 (1914), 1979–1982.
[2] Bellman, R. A.:
A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, New York, 1961.
MR 0125252 |
Zbl 0098.28301
[5] Ditkine, V., Proudnikov, A.:
Transformations Integrales et Calcul Opèrationnel. Mir, Moscow, 1978.
MR 0622210
[6] Edwards, H. M.:
Riemann’s Zeta function. Pure and Applied Mathematics 58, Academic Press, New York–London, 1974.
MR 0466039 |
Zbl 0315.10035
[7] Erdelyi, I. et al.: Higher Trascendental Functions. Bateman Manuscript Project 1, McGraw-Hill, New York, 1953.
[8] Euler, L.: Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques. Hist. Acad. Roy. Sci. Belles-Lettres Berlin 17 (1768), 83–106, (Also in: Opera Omnia, Ser. 1, vol. 15, 70–90).
[10] Ingham, A. E.:
The Distribution of Prime Numbers. Cambridge Univ. Press, Cambridge, 1990.
MR 1074573 |
Zbl 0715.11045
[11] Jacobi, C. G. I.: Fundamenta Nova Theoriae Functionum Ellipticarum. Sec. 40, Königsberg, 1829.
[12] Lapidus, M. L., van Frankenhuijsen, M.:
Fractal Geometry, Complex Dimension and Zeta Functions. Springer-Verlag, New York, 2006.
MR 2245559
[13] Legendre, A. M.: Mémoires de la classe des sciences mathématiques et phisiques de l’Institut de France, Paris. (1809), 477–490.
[14] Ossicini, A.:
An alternative form of the functional equation for Riemann’s Zeta function. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/9), 95–111.
MR 2604733
[15] Riemann, B.: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Gesammelte Werke, Teubner, Leipzig, 1892, reprinted Dover, New York, 1953, first published Monatsberichte der Berliner Akademie, November 1859.
[16] Stirling, J.: Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum. Gul. Bowyer, London, 1730.
[17] Srivastava, H. M., Choi, J.:
Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht–Boston–London, 2001.
MR 1849375 |
Zbl 1014.33001
[18] Titchmarsh, E. C., Heath-Brown, D. R.:
The Theory of the Riemann Zeta-Function. 2nd ed., Oxford Univ. Press, Oxford, 1986.
MR 0882550
[19] Varadarajan, V. S.:
Euler Through Time: A New Look at Old Themes. American Mathematical Society, 2006.
MR 2219954 |
Zbl 1096.01013
[21] Weil, A.:
Number Theory: an Approach Through History from Hammurapi to Legendre. Birkhäuser, Boston, 2007.
MR 2303999 |
Zbl 1149.01013
[22] Whittaker, E. T., Watson, G. N.:
A Course of Modern Analysis. 4th ed., Cambridge Univ. Press, Cambridge, 1988.
MR 1424469