Previous |  Up |  Next

Article

Keywords:
Hopf bifurcation; center manifold theorem; Poincare compactification; robust modified function projective synchronization; chaotic systems
Summary:
Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in $R^3$, the dynamical behaviors at infinity were described completely. Moreover, a RMFPS scheme of this special system was proposed and proved based on Lyapunov direct method. The simulation results demonstrate the correctness of the dynamics analysis and the effectiveness of the proposed synchronization strategy.
References:
[1] Chen, G. R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. Chaos 9 (1999), 1465-1466. DOI 10.1142/S0218127499001024 | MR 1729683 | Zbl 0962.37013
[2] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10 (2010), 17-23. MR 2721064
[3] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 1768-1775. DOI 10.1016/j.automatica.2013.02.021 | MR 3049226
[4] Chen, Y., Lü, J. H., Yu, X. H., Hill, D. J.: Multi-agent systems with dynamical topologies: Consensus and applications. IEEE Circuits Syst. Magazine 13 (2013), 21-34. DOI 10.1109/MCAS.2013.2271443
[5] Chen, Y., Lü, J. H., Yu, X. H., Lin, Z. L.: Consensus of discrete-time second order multi-agent systems based on infinite products of general stochastic matrices. SIAM J. Control Optim. 51 (2013), 3274-3301. DOI 10.1137/110850116 | MR 3090151
[6] Cima, A., Llibre, J.: Bounded polynomial vector field. T. Amer. Math. Soc. 318 (1990), 557-579. DOI 10.1090/S0002-9947-1990-0998352-5 | MR 0998352
[7] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006. MR 2256001 | Zbl 1110.34002
[8] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. DOI 10.1016/j.cnsns.2009.06.027
[9] Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory. Springer-Verlag, New York 1998. MR 1711790 | Zbl 1082.37002
[10] Lee, T. H., Park, J. H.: Adaptive functional projective lag synchronization of a hyperchaotic Rössler system. Chin. Phys. Lett. 26 (2009), 090507. DOI 10.1088/0256-307X/26/9/090507
[11] Leonov, G. A., Kuznetsov, N. V.: Prediction of hidden oscillations existence in nonlinear dynamical systems: analytics and simulation. Adv. Intelligent Syst. Comput. 210 (2013), 5-13. DOI 10.1007/978-3-319-00542-3_3 | Zbl 1272.93064
[12] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors. Phys. Lett. A 375 (2011), 2230-2233. DOI 10.1016/j.physleta.2011.04.037 | MR 2800438 | Zbl 1242.34102
[13] Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication. Kybernetika 48 (2012), 190-205. MR 2954320 | Zbl 1256.93084
[14] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system. Nonlinear Dyn. 70 (2012), 2203-2212. MR 2992208 | Zbl 1268.34092
[15] Liu, Y. J., Yang, Q. G.: Dynamics of the Lü system on the invariant algebraic surface and at infinity. Int. J. Bifur. Chaos 21 (2011), 2559-2582. DOI 10.1142/S0218127411029938 | MR 2859678 | Zbl 1248.34069
[16] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[17] Messias, M., Gouveia, M. R.: Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations. Nonlinear Dyn. 69 (2012), 577-587. DOI 10.1007/s11071-011-0288-8 | MR 2929895 | Zbl 1256.37007
[18] Shen, C. W., Yu, S. M., Lü, J. H., Chen, G. R.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits-I 61 (2014), 854-864. DOI 10.1109/TCSI.2013.2283994
[19] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E 50 (1994), 647-650. DOI 10.1103/PhysRevE.50.R647 | MR 1381868
[20] Sudheer, K. S., Sabir, M.: Adaptive modiffied function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters. Phys. Lett. A 373 (2009), 3743-3748. DOI 10.1016/j.physleta.2009.08.027 | MR 2569019
[21] Vaněček, A., Čelikovský, S.: Control systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London 1996. Zbl 0874.93006
[22] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 17 (2012). 1264-1272. DOI 10.1016/j.cnsns.2011.07.017 | MR 2843793
[23] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dyn. 60 (2010), 369-373. DOI 10.1007/s11071-009-9601-1 | MR 2645029 | Zbl 1189.70103
[24] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Phys. Sin. 60 (2011), 010513.
[25] Wei, Z. C., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 359-374. MR 3085401 | Zbl 1276.34043
[26] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifur. Chaos 18 (2008), 1393-1414. DOI 10.1142/S0218127408021063 | MR 2427132 | Zbl 1147.34306
Partner of
EuDML logo