[1] Balasubramaniam, P., Rakkiyappan, R.:
Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. Nonlinear Anal. Hybrid Syst. 3 (2009), 207-214.
MR 2535910 |
Zbl 1184.93093
[5] Ding, Y. C., Zhu, H., Zhong, S. M., Zhang, Y. P.:
$L_{2}-L_{\infty}$ filtering for Markovian jump systems with time-varying delays and partly unknown transition probabilities. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3070-3081.
DOI 10.1016/j.cnsns.2011.11.033 |
MR 2880476 |
Zbl 1243.62118
[7] Gronwall, T. H.:
Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919), 292-296.
DOI 10.2307/1967124 |
MR 1502565
[8] Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2805-2810.
[12] Hale, J. K., Lunel, S. M. V.:
Introduction To Functional Differential Equations. Springer, New York 1993.
MR 1243878 |
Zbl 0787.34002
[16] Lam, J., Gao, H., Wang, C.: $H_{\infty}$ model reduction of linear systems with distributed delay. Control Theory and Applications, IEE Proc. 152 (2005), 662-674.
[17] Lawrence, C. E.:
An introduction to stochastic differential equations. math.berkeley.edu/ evans/SDE.course.pdf.
MR 3154922
[19] Liu, Y., Wang, Z., Liu, X.:
Robust $H_{\infty}$ control for a class of nonlinear stochastic systems with mixed time delay. Int. J. Robust Nonlinear Control 17 (2007), 1525-1551.
DOI 10.1002/rnc.1185 |
MR 2356998 |
Zbl 1128.93015
[20] Liu, Y., Wang, Z., Liu, X.:
An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays. Nonlinear Anal. Hybrid Syst. 2 (2008), 110-120.
MR 2381041 |
Zbl 1157.93039
[21] Ma, L., Da, F. P.:
Exponential $H_{\infty}$ filter design for stochastic time-varying delay systems with Markovian jumping parameters. Int. J. Robust and Nonlinear Control 20 (2010), 802-817.
DOI 10.1002/rnc.1477 |
MR 2657281
[22] Ma, L., Da, F. P., Zhang, K. J.:
Exponential $H_{\infty}$ Filter Design for Discrete Time-Delay Stochastic Systems With Markovian Jump Parameters and Missing Measurements. IEEE Trans. Circuits Syst. I: Regul. Pap. 58 (2011), 994-1007.
DOI 10.1109/TCSI.2010.2089554 |
MR 2827933
[23] Mariton, M.: Jump Linear Systems In Automatic Control. Marcel Dekker, New York 1990.
[24] Mao, X. R.:
Exponential stability of stochastic delay interval systems with Markovian switching. IEEE Trans. Automat. Control 47 (2002), 1604-1612.
DOI 10.1109/TAC.2002.803529 |
MR 1929934
[26] Wang, Z., Lauria, S., Fang, J., Liu, X.:
Exponential stability of uncettain stochastic neural networks with mixed time-delays. Chaos, Solitons Fractals 32 (2007), 62-72.
DOI 10.1016/j.chaos.2005.10.061 |
MR 2271102
[27] Wang, Y., Zhang, H.:
$H_{\infty}$ control for uncertain Markovian jump systems with mode-dependent mixed delays. Progress Natural Sci. 18 (2008), 309-314.
MR 2419784
[28] Wang, G. L., Zhang, Q. L., Yang, C. Y.:
Exponential $H_{\infty}$ filtering for time-varying delay systems: Markovian approach. Signal Process. 91 (2011), 1852-1862.
Zbl 1217.93170
[30] Wu, L., Shi, P., Wang, C., Gao, H.:
Delay-dependent robust $H_{\infty}$ and $L_{2}-L_{\infty}$ filtering for LPV systems with both discrete and distributed delays. Control Theory and Applications, IEE Proc. 153 (2006), 483-492.
MR 2351871
[31] Xie, L., Fridman, E., Shaked, U.:
Robust $H_{\infty}$ control of distributed delay systems with application to combustion control. IEEE Trans. Automat. Control 46 (2001), 1930-1935.
DOI 10.1109/9.975483 |
MR 1878215 |
Zbl 1017.93038
[33] Xu, S., Chen, T.:
An LMI approach to the $H_{\infty}$ filter design for uncertain systems with distributed delays. IEEE Trans. Circuits Syst.-II: Express Briefs 51 (2004), 195-201.
DOI 10.1109/TCSII.2003.822432
[34] Xu, S., Chu, Y., Lu, J., Zou, Y.:
Exponential dynamic output feedback controller design for stochastic neutral systems with distributed delays. IEEE Trans. Systems, Man, Cybernetics - Part A: Systems and Humans 36 (2006), 540-548.
DOI 10.1109/TSMCA.2006.871648
[35] Xu, S., Lam, J., Chen, T., Zou, Y.:
A delay-dependent approach to robust $H_{\infty}$ filtering for uncertain distributed delay systems. IEEE Trans. Signal Process. 53 (2005), 3764-3772.
DOI 10.1109/TSP.2005.855109 |
MR 2239897
[37] Yue, D., Han, Q. L.:
Robust $H_{\infty}$ filter design of uncertain descriptor systems with discrete and distributed delays. IEEE Trans. Signal Process. 52 (2004), 3200-3212.
DOI 10.1109/TSP.2004.836535 |
MR 2095601
[38] Yue, D., Han, Q. L.:
Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching. IEEE Trans. Automat. Control 50 (2005), 217-222.
DOI 10.1109/TAC.2004.841935 |
MR 2116427
[39] Zhang, X. M., Han, Q. L.:
A less conservative method for designing $H_{\infty}$ filters for linear time-delay systems. Int. J. Robust and Nonlinear Control 19 (2009), 1376-1396.
DOI 10.1002/rnc.1407 |
MR 2537820 |
Zbl 1169.93418