Previous |  Up |  Next

Article

Keywords:
countable tightness; strongly sequentially closed sets; sequentially closed sets; quotient maps; countably bi-quotient maps; locally countable spaces
Summary:
In this paper $ss$-quotient maps and $ssq$-spaces are introduced. It is shown that (1) countable tightness is characterized by $ss$-quotient maps and quotient maps; (2) a space has countable tightness if and only if it is a countably bi-quotient image of a locally countable space, which gives an answer for a question posed by F. Siwiec in 1975; (3) $ssq$-spaces are characterized as the $ss$-quotient images of metric spaces; (4) assuming $2^\omega<2^{\omega_1}$, a compact $T_2$-space is an $ssq$-space if and only if every countably compact subset is strongly sequentially closed, which improves some results about sequential spaces obtained by M. Ismail and P. Nyikos in 1980.
References:
[1] Arhangel'skiĭ A.V.: Some types of factor mappings and the relations between classes of topological spaces. (in Russian), Dokl. Akad. Nauk SSSR 153 (1963), 743–746. MR 0158362
[2] Balogh Z.: On compact Hausdorff spaces of countably tightness. Proc. Amer. Math. Soc. 105 (1989), 755–764. DOI 10.1090/S0002-9939-1989-0930252-6 | MR 0930252
[3] Boone J.R.: On $k$-quotient mappings. Pacific J. Math. 51 (1974), 369–377. DOI 10.2140/pjm.1974.51.369 | MR 0358665 | Zbl 0263.54003
[4] Boone J.R., Siwiec F.: Sequentially quotient mappings. Czechoslovak Math. J. 26 (1976), 174–182. MR 0402689 | Zbl 0334.54003
[5] Čech E., Pospíšil B.: Sur les espaces compacts. Publ. Fac. Sci. Univ. Masaryk Brno 258 (1938), 3–7. Zbl 0019.08903
[6] Engelking R.: General Topology. (revised and completed edition), Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[7] Franklin S.P.: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107–115. MR 0180954 | Zbl 0168.43502
[8] Franklin S.P., Rajagopalan M.: Some examples in topology. Trans. Amer. Math. Soc. 155 (1971), 305–314. DOI 10.1090/S0002-9947-1971-0283742-7 | MR 0283742 | Zbl 0217.48104
[9] Gruenhage G., Michael E.A., Tanaka Y.: Spaces determined by point-countable covers. Pacific J. Math. 113 (1984), 303–332. DOI 10.2140/pjm.1984.113.303 | MR 0749538 | Zbl 0561.54016
[10] Hodel R.: Cardinal functions I. in: K. Kunen and J.E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 1–61. MR 0776620 | Zbl 0559.54003
[11] Hong W.C.: A note on spaces which have countable tightness. Commun. Korean Math. Soc. 26 (2011), 297–304. DOI 10.4134/CKMS.2011.26.2.297 | MR 2816567 | Zbl 1214.54004
[12] Ismail M., Nyikos P.: On spaces in which countably compact subsets are closed, and hereditary properties. Topology Appl. 10 (1980), 281–292. DOI 10.1016/0166-8641(80)90027-9 | MR 0585273
[13] Lin S.: Generalized Metric Spaces and Maps. Second Edition, China Science Press, Beijing, 2007. MR 2323470 | Zbl 1159.54002
[14] Lin S., Li K., Ge Y.: Convergent-sequence spaces and sequence-covering mappings. Houston J. Math. 39 (2013), 1367–1384. MR 3164722
[15] Lin S., Zheng C.: The $k$-quotient images of metric spaces. Commun. Korean Math. Soc. 27 (2012), 377–384. DOI 10.4134/CKMS.2012.27.2.377 | MR 2962531 | Zbl 1241.54019
[16] Lin S., Zhu Z.: A note on countably bi-quotient mappings. Kodai Math. J. 35 (2012), 392–402. DOI 10.2996/kmj/1341401059 | MR 2951265 | Zbl 1269.54006
[17] Lin S., Zhu Z.: Workshop lecture on the images of some metric spaces. (in Chinese), Adv. Math. (China) 42 (2013), 129–137. MR 3112898
[18] Liu C.: Notes on closed mappings. Houston J. Math. 33 (2007), 249–259. MR 2287853 | Zbl 1133.54018
[19] Michael E.A.: A quintuple quotient quest. General Topology Appl. 2 (1972), 91–138. DOI 10.1016/0016-660X(72)90040-2 | MR 0309045 | Zbl 0238.54009
[20] Moore R.C., Mrowka S.G.: Topologies determined by countable objects. Notices Amer. Math. Soc. 11 (1964), 554.
[21] Mynard F.: First-countability, sequentiality and tightness of the upper Kuratowski convergence. Rocky Mountain J. Math. 34 (2004), 733–758. DOI 10.1216/rmjm/1181069877 | MR 2038536 | Zbl 1064.54017
[22] Nyikos P.J.: Problem section. Topology Proc. 2 (1977), 658–688. Zbl 0604.54001
[23] Nyikos P.J., Vaughan J.E.: The Scarborough-Stone problem for Hausdorff spaces. Topology Appl. 44 (1992), 309–316. DOI 10.1016/0166-8641(92)90103-7 | MR 1173267 | Zbl 0758.54010
[24] Ostaszewski A.: On countably compact, perfectly normal spaces. J. London Math. Soc. 14 (1976), 505–516. DOI 10.1112/jlms/s2-14.3.505 | MR 0438292 | Zbl 0348.54014
[25] Sakai M.: Quotient maps onto submaximal spaces. Topology Appl. 164 (2014), 248–258. DOI 10.1016/j.topol.2014.01.010 | MR 3160480 | Zbl 1291.54023
[26] Siwiec F.: Sequence-covering and countably bi-quotient mappings. General Topology Appl. 1 (1971), 143–154. DOI 10.1016/0016-660X(71)90120-6 | MR 0288737 | Zbl 0218.54016
[27] Siwiec F.: Generalizations of the first axiom of countability. Rocky Mountain J. Math. 5 (1975), 1–60. DOI 10.1216/RMJ-1975-5-1-1 | MR 0358699 | Zbl 0294.54021
[28] Steen L.A., Seebach J.A., Jr.: Counterexamples in Topology. reprint of the second (1978) edition, Dover Publications Inc., Mineola, NY, 1995. MR 1382863 | Zbl 0386.54001
[29] Zhu J.P.: $w$-spaces and $w$-maps. Science Bull. (China) 32 (1987), 68–69.
Partner of
EuDML logo