Previous |  Up |  Next

Article

Keywords:
fixed point; graph; metric space; order; cyclic map
Summary:
In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
References:
[1] Agarwal, R. P., El-Gebeily, M. A., O'Regan, D.: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87 (2008), 109-116. DOI 10.1080/00036810701556151 | MR 2381749 | Zbl 1140.47042
[2] Aleomraninejad, S. M. A., Rezapour, S., Shahzad, N.: Some fixed point results on a metric space with a graph. Topology Appl. 159 (2012), 659-663. MR 2868864 | Zbl 1237.54042
[3] Altun, I., Simsek, H.: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. (2010), Article ID 621469, 17 pages. MR 2591832 | Zbl 1197.54053
[4] Beg, I., Butt, A. R., Radojević, S.: The contraction principle for set valued mappings on a metric space with a graph. Comput. Math. Appl. 60 (2010), 1214-1219. DOI 10.1016/j.camwa.2010.06.003 | MR 2672921 | Zbl 1201.54029
[5] Bhaskar, T. G., Lakshmikantham, V.: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), 1379-1393. MR 2245511 | Zbl 1106.47047
[6] Boyd, D. W., Wong, J. S. W.: On nonlinear contractions. Proc. Am. Math. Soc. 20 (1969), 458-464. DOI 10.1090/S0002-9939-1969-0239559-9 | MR 0239559 | Zbl 0175.44903
[7] Chatterjea, S. K.: Fixed-point theorems. C. R. Acad. Bulg. Sci. 25 (1972), 727-730. MR 0324493 | Zbl 0274.54033
[8] 'Cirić, Lj. B.: Generalized contractions and fixed-point theorems. Publ. Inst. Math., Nouv. Sér. 12 (1971), 19-26. MR 0309092 | Zbl 0234.54029
[9] Ćirić, Lj. B., Cakić, N., Rajović, M., Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. (2008), Article ID 131294, 11 pages. MR 2481377 | Zbl 1158.54019
[10] Espínola, R., Kirk, W. A.: Fixed point theorems in $\mathbb{R}$-trees with applications to graph theory. Topology Appl. 153 (2006), 1046-1055. DOI 10.1016/j.topol.2005.03.001 | MR 2203018 | Zbl 1095.54012
[11] Hardy, G. E., Rogers, T. D.: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16 (1973), 201-206. DOI 10.4153/CMB-1973-036-0 | MR 0324495 | Zbl 0266.54015
[12] Harjani, J., Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 71 (2009), 3403-3410. MR 2532760 | Zbl 1221.54058
[13] Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136 (2008), 1359-1373. DOI 10.1090/S0002-9939-07-09110-1 | MR 2367109 | Zbl 1139.47040
[14] Kannan, R.: On certain sets and fixed point theorems. Rev. Roum. Math. Pures Appl. 14 (1969), 51-54. MR 0243507 | Zbl 0188.55403
[15] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (2003), 79-89. MR 2031823 | Zbl 1052.54032
[16] Nieto, J. J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22 (2005), 223-239. DOI 10.1007/s11083-005-9018-5 | MR 2212687 | Zbl 1095.47013
[17] Nieto, J. J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin., Engl. Ser. 23 (2007), 2205-2212. DOI 10.1007/s10114-005-0769-0 | MR 2357454 | Zbl 1140.47045
[18] Petruşel, A., Rus, I. A.: Fixed point theorems in ordered $L$-spaces. Proc. Am. Math. Soc. 134 (2006), 411-418. DOI 10.1090/S0002-9939-05-07982-7 | MR 2176009 | Zbl 1086.47026
[19] Ran, A. C. M., Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132 (2004), 1435-1443. DOI 10.1090/S0002-9939-03-07220-4 | MR 2053350 | Zbl 1060.47056
[20] Samet, B.: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 72 (2010), 4508-4517. DOI 10.1016/j.na.2010.02.026 | MR 2639199 | Zbl 1264.54068
[21] Samet, B., Vetro, C.: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 74 (2011), 4260-4268. MR 2803028 | Zbl 1216.54021
[22] Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136 (2008), 1861-1869. DOI 10.1090/S0002-9939-07-09055-7 | MR 2373618 | Zbl 1145.54026
[23] Turinici, M.: Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 117 (1986), 100-127. DOI 10.1016/0022-247X(86)90251-9 | MR 0843008 | Zbl 0613.47037
Partner of
EuDML logo