[4] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.:
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics 6 World Scientific, Singapore (1989).
MR 1082551
[7] Mawhin, J.:
Semi-coercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130.
MR 0938142 |
Zbl 0647.49007
[10] Nieto, J. J., O'Regan, D.:
Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 680-690.
MR 2474254 |
Zbl 1167.34318
[12] Rabinowitz, P. H.:
Minimax methods in critical point theory with applications to differential equations. Reg. Conf. Ser. Math. 65 American Mathematical Society, Providence (1986).
MR 0845785 |
Zbl 0609.58002
[13] Samoilenko, A. M., Perestyuk, N. A.:
Impulsive Differential Equations. Transl. from the Russian. World Scientific Series on Nonlinear Science, Series A. 14. Singapore (1995).
MR 1355787 |
Zbl 0837.34003
[14] Sun, J. T., Chen, H. B., Yang, L.:
The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 440-449.
DOI 10.1016/j.na.2010.03.035 |
MR 2650827 |
Zbl 1198.34037
[19] Tang, X. H., Meng, Q.:
Solutions of a second-order Hamiltonian system with periodic boundary conditions. Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733.
MR 2683825 |
Zbl 1223.34024
[20] Willem, M.: Forced oscillations of Hamiltonian systems. Publ. Math. Fac. Sci. Besançon, Anal. Non Lineaire Annee 1980-1981, Expose No. 4 French (1981).
[21] Wu, X.:
Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 58 (2004), 899-907.
DOI 10.1016/j.na.2004.05.020 |
MR 2086063 |
Zbl 1058.34053
[24] Zavalishchin, S. T., Sesekin, A. N.:
Dynamics Impulse System: Theory and Applications. Mathematics and its Applications 394 Kluwer, Dordrecht (1997).
MR 1441079
[26] Zhao, F., Wu, X.:
Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 325-335.
MR 2101882 |
Zbl 1087.34022
[27] Zhou, J. W., Li, Y. K.:
Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2856-2865.
DOI 10.1016/j.na.2009.01.140 |
MR 2532812 |
Zbl 1175.34035
[28] Zhou, J. W., Li, Y. K.:
Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1594-1603.
DOI 10.1016/j.na.2009.08.041 |
MR 2577560 |
Zbl 1193.34057