[1] Bingham, N.H., Goldie, C.M., Teugels, J.L.:
Regular Variation. Encyclopedia Math. Appl., Cambridge University Press, 1987.
MR 0898871 |
Zbl 0617.26001
[2] Coppel, W.A.:
Stability and Asymptotic Behavior of Differential Equations. D.C. Heath and Company, Boston, 1965.
MR 0190463 |
Zbl 0154.09301
[4] Haupt, O., Aumann, G.: Differential- und Integralrechnung. Walter de Gruyter & Co., Berlin, 1938.
[5] Jaroš, J., Kusano, T.:
Existence and precise asymptotic behavior of strongly monotone solutions of systems of nonlinear differential equations. Differ. Equ. Appl. 5 (2013), 185–204.
MR 3099987
[6] Jaroš, J., Kusano, T.:
Slowly varying solutions of a class of first order systems of nonlinear differentialequations. Acta Math. Univ. Comenian. 82 (2013), 265–284.
MR 3106802
[7] Jaroš, J., Kusano, T., Tanigawa, T.:
Asymptotic analysis of positive solutions of a class of third order nonlinear differential equations in the framework of regular variation. Math. Nachr. 286 (2013), 205–223.
DOI 10.1002/mana.201100296 |
MR 3021476 |
Zbl 1269.34054
[8] Kusano, T., Manojlović, J.:
Asymptotic behavior of positive solutions of sublinear differentialequations of Emden-Fowler type. Comput. Math. Appl. 62 (2011), 551–565.
DOI 10.1016/j.camwa.2011.05.019 |
MR 2817892
[9] Kusano, T., Manojlović, J.:
Precise asymptotic behavior of solutions of the sublinear Emden-Fowlerdifferential equation. Appl. Math. Comput. 217 (2011), 4382–4396.
DOI 10.1016/j.amc.2010.09.061 |
MR 2745121
[10] Kusano, T., Manojlović, J.:
Positive solutions of fourth order Emden-Fowler type differential equationsin the framework of regular variation. Appl. Math. Comput. 218 (2012), 6684–6701.
DOI 10.1016/j.amc.2011.12.029 |
MR 2880324
[11] Kusano, T., Manojlović, J.:
Positive solutions of fourth order Thomas-Fermi type differential equationsin the framework of regular variation. Acta Appl. Math. 121 (2012), 81–103.
DOI 10.1007/s10440-012-9691-5 |
MR 2966967
[12] Kusano, T., Manojlović, J.:
Complete asymptotic analysis of positive solutions of odd-order nonlinear differential equations. Lithuanian Math. J. 53 (2013), 40–62.
DOI 10.1007/s10986-013-9192-x |
MR 3038148
[13] Kusano, T., Marić, V., Tanigawa, T.:
An asymptotic analysis of positive solutions of generalized Thomas-Fermi differential equations – The sub-half-linear case. Nonlinear Anal. 75 (2012), 2474–2485.
MR 2870933 |
Zbl 1248.34075
[14] Marić, V.:
Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000.
DOI 10.1007/BFb0103952 |
MR 1753584
[15] Mirzov, J.D.:
Asymptotic Properties of Solutions of Systems of Nonlinear Nonautonomous Ordinary Differential Equations. Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Mathematica, vol. 14, Masaryk University, Brno, 2004.
MR 2144761 |
Zbl 1154.34300
[16] Seneta, E.:
Regularly Varying Functions. Lecture Notes in Math., vol. 508, Springer Verlag, Berlin-Heidelberg, 1976.
MR 0453936 |
Zbl 0324.26002