[3] Altin, Y., Et, M.:
Generalized difference sequence spaces defined by a modulus function in a locally convex space. Soochow J. Math. 31 (2005), 233–243.
MR 2149876 |
Zbl 1085.46501
[4] Altin, Y., Işik, M., Çolak, R.:
A new sequence space defined by a modulus. Stud. Univ. Babes–Bolyai Math. 53 (2008), 3–13.
MR 2440755 |
Zbl 1212.46010
[5] Altinok, H., Altin, Y., Işik, M.:
The sequence space $Bv_\sigma (M,P,Q,S)$ on seminormed spaces. Indian J. Pure Appl. Math. 39 (2008), 49–58.
MR 2413756 |
Zbl 1153.46300
[6] Başarir, M., Sonalcan, O.:
On some double sequence spaces. J. Indian Acad. Math. 21 (1999), 193–200.
MR 1754919 |
Zbl 0978.40002
[7] Başar, F., Sever, Y.:
The space $\mathcal {L}_p$ of double sequences. Math. J. Okayama Univ. 51 (2009), 149–157.
MR 2482412
[8] Bromwich, T. J.: An Introduction to the Theory of Infinite Series. Macmillan and co., Ltd., New York, 1965.
[9] Connor, J.:
On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 30 (1989), 194–198.
MR 1006746 |
Zbl 0693.40007
[10] Esi, A.:
Some new sequence spaces defined by a sequence of moduli. Turk. J. Math. 21 (1997), 61–68.
MR 1473301 |
Zbl 0914.46005
[11] Esi, A.:
Strongly $[V_2, \lambda _2, M, p]$-summable double sequence spaces defined by Orlicz function. Int. J. Nonlinear Anal. Appl. 2 (2011), 110–115.
Zbl 1281.40003
[12] Et, M., Çolak, R.: On generalized difference sequence spaces. Soochow J. Math. 21, 4 (1995), 377–386.
[13] Gähler, S.: Linear 2-normietre RumeStatistical convergence in 2-normed spaces. Math. Nachr. 28 (1965), 1–43. Statistical convergence in 2-normed spaces Southeast Asian Bull. Math. 33, 2 (2009), 257–264.
[14] Gunawan, H.:
On $n$-inner product, $n$-norms, and the Cauchy-Schwartz inequality. Sci. Math. Jap. 5 (2001), 47–54.
MR 1885776
[18] Hardy, G. H.: On the convergence of certain multiple series. Proc. Camb. Phil., Soc. 19 (1917), 86–95.
[22] Malkowsky, E., Savaş, E.:
Some $ \lambda $-sequence spaces defined by a modulus. Archivum Math. 36 (2000), 219–228.
MR 1785040 |
Zbl 1046.40011
[24] Moricz, F.:
Extension of the spaces $c $ and $c_0$ from single to double sequences. Acta Math. Hungarica 57 (1991), 129–136.
DOI 10.1007/BF01903811 |
MR 1128849
[25] Moricz, F., Rhoades, B. E.:
Almost convergence of double sequences and strong reqularity of summability matrices. Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294.
DOI 10.1017/S0305004100065464 |
MR 0948914
[30] Raj, K., Sharma, S. K.:
Difference sequence spaces defined by sequence of modulus function. Proyecciones J. Math. 30 (2011), 189–199.
MR 2852349
[31] Raj, K., Sharma, S. K.: Some difference sequence spaces defined by sequence of modulus function. Int. J. Math. Archive 2 (2011), 236–240.
[33] Savaş, E.:
On some generalized sequence spaces defined by a modulus. Indian J. Pure Appl. Math. 30 (1999), 459–464.
MR 1694693 |
Zbl 0928.40006
[35] Tripathy, B. C.:
Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces. Soochow J. Math. 30 (2004), 431–446.
MR 2106062
[36] Tripathy, B. C.:
Statistically convergent double sequences. Tamkang J. Math. 34 (2003), 231–237.
MR 2001918 |
Zbl 1040.40001
[37] Wilansky, A.:
Summability through Functional Analysis. 85 North–Holland Math. Stud. 1984.
MR 0738632 |
Zbl 0531.40008
[38] Zeltser, M.:
Investigation of Double Sequence Spaces by Soft and Hard Analytical Methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
MR 1833364 |
Zbl 1087.46004