Previous |  Up |  Next

Article

Title: Inequalities for the Riemann–Stieltjes Integral of under the Chord Functions with Applications (English)
Author: Dragomir, Silvestru S.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 1
Year: 2014
Pages: 45-64
Summary lang: English
.
Category: math
.
Summary: We say that the function $f\colon [a,b] \rightarrow \mathbb {R}$ is under the chord if \begin{equation*} \frac{\left( b-t\right) f(a) +\left( t-a\right) f(b) }{b-a}\ge f(t) \end{equation*} for any $t\in [a,b] $. In this paper we proved amongst other that \begin{equation*} \int _{a}^{b}u(t) df(t) \ge \frac{f(b) -f(a) }{b-a}\int _{a}^{b}u(t) dt \end{equation*} provided that $u\colon [ a,b] \rightarrow \mathbb {R}$ is monotonic nondecreasing and $f\colon [a,b] \rightarrow \mathbb {R}$ is continuous and under the chord. Some particular cases for the weighted integrals in connection with the Fejér inequalities are provided. Applications for continuous functions of selfadjoint operators on Hilbert spaces are also given. (English)
Keyword: Fejér inequality
Keyword: functions of bounded variation
Keyword: monotonic functions
Keyword: total variation
Keyword: selfadjoint operators
MSC: 26D15
MSC: 47A63
idZBL: Zbl 1310.26019
idMR: MR3331070
.
Date available: 2014-09-01T07:59:21Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143915
.
Reference: [1] Azpeitia, A. G.: Convex functions and the Hadamard inequality. Rev. Colombiana Mat. 28, 1 (1994), 7–12. Zbl 0832.26015, MR 1304041
Reference: [2] Beckenbach, E. F., Bellman, R.: Inequalities. 4th Edition, Springer-Verlag, Berlin, 1983. Zbl 0513.26003, MR 0192009
Reference: [3] Cerone, P., Dragomir, S. S., Roumeliotis, J., Šunde, J.: A new generalization of the trapezoid formula for $n$-time differentiable mappings and applications. Demonstratio Math. 33, 4 (2000), 719–736. Zbl 0974.26010, MR 1807637
Reference: [4] Dragomir, S. S.: A mapping in connection to Hadamard’s inequalities. An. Öster. Akad. Wiss. Math.-Natur. (Wien) 128 (1991), 17–20, MR 934:26032. ZBL No. 747:26015. Zbl 0747.26015, MR 1188722
Reference: [5] Dragomir, S. S.: Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 167 (1992), 49–56, MR:934:26038, ZBL No. 758:26014. Zbl 0758.26014, MR 1165255, 10.1016/0022-247X(92)90233-4
Reference: [6] Dragomir, S. S.: On Hadamard’s inequalities for convex functions. Mat. Balkanica 6 (1992), 215–222, MR: 934:26033. Zbl 0834.26010, MR 1183627
Reference: [7] Dragomir, S. S.: An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3, 3 (2002), Article 35, 1–8. Zbl 0995.26009, MR 1917794
Reference: [8] Dragomir, S. S.: Inequalities of Grüss type for the Stieltjes integral and applications. Kragujevac J. Math. 26 (2004), 89–122. Zbl 1274.26035, MR 2126003
Reference: [9] Dragomir, S. S.: Bounds for the normalized Jensen functional. Bull. Austral. Math. Soc. 74, 3 (2006), 471–476. MR 2273755, 10.1017/S000497270004051X
Reference: [10] Dragomir, S. S.: Inequalities for Stieltjes integrals with convex integrators and applications. Appl. Math. Lett. 20 (2007), 123–130. Zbl 1116.26004, MR 2283898, 10.1016/j.aml.2006.02.027
Reference: [11] Dragomir, S. S., Gomm, I.: Some applications of Fejér’s inequality for convex functions (I). Austral. J. Math. Anal. Appl. 10, 1 (2013), Article 9, 1–11. Zbl 1264.26025, MR 3056059
Reference: [12] Dragomir, S. S., Milošević, D. S., Sándor, J.: On some refinements of Hadamard’s inequalities and applications. Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 21–24. Zbl 0813.26005, MR 1220829
Reference: [13] Dragomir, S. S., Pearce, C. E. M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000, [online] http://rgmia.org/monographs/hermite_hadamard.html.
Reference: [14] Dragomir, S. S., Pearce, C. E. M.: Some inequalities relating to upper and lower bounds for the Riemann–Stieltjes integral. J. Math. Inequal. 3, 4 (2009), 607–616. Zbl 1182.26047, MR 2599159, 10.7153/jmi-03-59
Reference: [15] Féjer, L.: Über die Fourierreihen, II. Math. Naturwiss, Anz. Ungar. Akad. Wiss. 24 (1906), 369–390, (in Hungarian).
Reference: [16] Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115, 2 (2002), 260–288. Zbl 1012.26013, MR 1901217, 10.1006/jath.2001.3658
Reference: [17] Helmberg, G.: Introduction to Spectral Theory in Hilbert Space. John Wiley & Sons, Inc., New York, 1969. Zbl 0177.42401, MR 0243367
Reference: [18] Kikianty, E., Dragomir, S. S.: Hermite–Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space. Math. Inequal. Appl. 13, 1 (2010), 1–32. Zbl 1183.26025, MR 2648227
Reference: [19] Merkle, M.: Remarks on Ostrowski’s and Hadamard’s inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 113–117. Zbl 0946.26016, MR 1710976
Reference: [20] Mercer, P. R.: Hadamard’s inequality and trapezoid rules for the Riemann–Stieltjes integral. J. Math. Anal. Applic. 344 (2008), 921–926. Zbl 1147.26013, MR 2426320, 10.1016/j.jmaa.2008.03.026
Reference: [21] Mitrinović, D. S., Lacković, I. B.: Hermite and convexity. Aequationes Math. 28 (1985), 229–232. Zbl 0572.26004, MR 0791622, 10.1007/BF02189414
Reference: [22] Pearce, C. E. M., Rubinov, A. M.: P-functions, quasi-convex functions, and Hadamard type inequalities. J. Math. Anal. Appl. 240, 1 (1999), 92–104. Zbl 0939.26009, MR 1728202, 10.1006/jmaa.1999.6593
Reference: [23] Pečarić, J., Vukelić, A.: Hadamard and Dragomir–Agarwal inequalities, the Euler formulae and convex functions. Functional equations, inequalities and applications, Kluwer Acad. Publ., Dordrecht, 2003, 105–137. Zbl 1067.26021, MR 2042560
Reference: [24] Pečarić, J., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press Inc., San Diego, 1992. Zbl 0749.26004, MR 1162312
Reference: [25] Toader, G.: Superadditivity and Hermite-Hadamard’s inequalities. Studia Univ. Babeş-Bolyai Math. 39, 2 (1994), 27–32. Zbl 0868.26012, MR 1434748
Reference: [26] Yand, G.-S., Hong, M.-C.: A note on Hadamard’s inequality. Tamkang J. Math. 28, 1 (1997), 33–37.
Reference: [27] Yand, G.-S., Tseng, K.-L.: On certain integral inequalities related to Hermite–Hadamard inequalities. J. Math. Anal. Appl. 239, 1 (1999), 180–187. MR 1719056, 10.1006/jmaa.1999.6506
.

Files

Files Size Format View
ActaOlom_53-2014-1_4.pdf 280.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo