Previous |  Up |  Next

Article

Keywords:
pseudo symmetric manifolds; pseudo Ricci symmetric manifolds; almost pseudo Ricci symmetric manifolds; almost pseudo-Z-symmetric manifolds; conformally flat almost pseudo-Z-symmetric manifolds
Summary:
The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat $A(PZS)_{n}$ ($n>3$) is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained in Section 5.
References:
[1] Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature. Tensor, N. S. 18 (1967), 348–354. MR 0215251 | Zbl 0152.39103
[2] Binh, T. Q.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 42 (1993), 103–107. MR 1208855 | Zbl 0797.53041
[3] Cartan, E.: Sur une classes remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 (1926), 214–264. MR 1504900
[4] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113–295. MR 0163255 | Zbl 0122.39902
[5] Chaki, M. C.: On pseudo symmetric manifolds. Ann. St. Univ. “Al I Cuza" Iasi 33 (1987), 53–58. MR 0925690 | Zbl 0634.53012
[6] Chaki, M. C.: On pseudo Ricci symmetric manifolds. Bulg. J. Phys. 15 (1988), 525–531. MR 1028590 | Zbl 0689.53011
[7] Chaki, M. C., Kawaguchi, T.: On almost pseudo Ricci symmetric manifolds. Tensor, N. S. 68 (2007), 10–14. MR 2363663 | Zbl 1193.53099
[8] Chen, B. Y., Yano, K.: Hypersurfaces of a conformally flat spaces. Tensor, N. S. 26 (1972), 318–322. MR 0331283
[9] Chern, S. S.: On the curvature and characteristic classes of a Riemannian manifold. Abh. Math. Sem. Univ. Hamburg 20 (1956), 117–126. DOI 10.1007/BF02960745 | MR 0075647
[10] De, U. C.: On weakly symmetric structures on Riemannian manifolds. Facta Univ. Ser. Mech. Automat. Control Robot. 3 (2003), 805–819. MR 2021830
[11] De, U. C., Bandyopadhyay, S.: On weakly symmetric spaces. Publ. Math. Debrecen 54 (1999), 377–381. MR 1694492
[12] De, U. C., Bandyopadhyay, S.: On weakly symmetric spaces. Acta Math. Hungarica 83 (2000), 205–212. MR 1761275 | Zbl 0958.53038
[13] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Annales Univ. Sci. Budapest. 51 (2008), 53–68. MR 2567494 | Zbl 1224.53056
[14] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstratio Mathematica 4 (2009), 869–886. MR 2588986 | Zbl 1184.53034
[15] De, U. C., Gazi, A. K.: On conformally flat almost pseudo Ricci symmetric manifolds. Kyungpook Math. J. 49 (2009), 507–520. DOI 10.5666/KMJ.2009.49.3.507 | MR 2601863
[16] De, U. C., Gazi, A. K.: On pseudo Ricci symmetric manifold. Analele Stiintifice Ale Universitatii “Al. I. Cuza" Din IASI (S. N.), Matematica 58 (2012), 209–222. MR 3012127
[17] De, U. C., Sengupta, J.: On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection. Novi Sad. J. Math. 29 (1999), 89–95. MR 1770988 | Zbl 1011.53024
[18] De, A., Őzgűr, C., De, U. C.: On conformally flat almost pseudo-Ricci symmetric space times. Int. J. Theor. Phys. 51 (2012), 2878–2887. DOI 10.1007/s10773-012-1164-0 | MR 2955551
[19] Eisenhart, L. P.: Riemannian Geometry. Princeton University Press, Princeton, 1949. MR 0035081 | Zbl 0041.29403
[20] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. DOI 10.1007/BF00151525 | MR 0505561 | Zbl 0378.53018
[21] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds. In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009) 8 (2009), 423–430.
[22] Hui, S. K.: On weakly $W_{3}$-symmetric manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 53–71. MR 2920699 | Zbl 1252.53020
[23] Kobayashi, S., Nomizu, K.: Foundation of Differential Geometry, Vol. I. Interscience Publishers, New York, 1963. MR 0152974
[24] Mantica, C. A., Molinari, L. G.: Weakly Z-Symmetric manifolds. Acta Math. Hungarica 135 (2012), 80–96. DOI 10.1007/s10474-011-0166-3 | MR 2898791 | Zbl 1289.53040
[25] Mantica, C. A., Suh, Y. J.: Pseudo-Z-symmetric Riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Meth. Mod. Phys. 9 (2012), 1250004 1–21. DOI 10.1142/S0219887812500041 | MR 2891518 | Zbl 1244.53019
[26] Mantica, C. A., Suh, Y. J.: Recurrent Z forms on Riemannian and Kaehler manifolds. Int. J. Geom. Meth. Mod. Phys. 9 (2012), 1250059 1–26. DOI 10.1142/S0219887812500594 | MR 2972516 | Zbl 1255.53024
[27] Mikeš, J.: On geodesic mappings of Ricci-2-symmetric Riemannian spaces. Mat. Zametki 28 (1980), 313–317, Transl.: Math. Notes 28 (1980), 922–924. MR 0587405
[28] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. Geometry, 2. J. Math. Sci. 78 (1996), 311–333. MR 1384327
[29] Mikeš, J., Hinterleitner, I., :, Vanžurová, A.: Geodesic mappings and some generalizations. Palacký University, Olomouc, 2009. MR 2682926 | Zbl 1222.53002
[30] Mikeš, J., Chudá, H.: On geodesic mappings with certain initial conditions. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26 (2010), 337–341. MR 2754425 | Zbl 1240.53029
[31] O’Neill, B.: Semi-Riemannian Geometry with Applications to the Relativity. Academic Press, New York–London, 1983. MR 0719023
[32] Ozen, F., Altay, S.: Weakly and pseudo-symmetric Riemannian spaces. Indian J. Pure appl. Math. 33 (2002), 1477–1488. MR 1941070 | Zbl 1028.53056
[33] Ozen, F., Altay, S.: On weakly and pseudo-concircular symmetric structures on a Riemannian manifold. Acta Univ. Palack. Olomuc., Fac. rer. nat., Math. 47 (2008), 129–138. MR 2482723 | Zbl 1184.53022
[34] Prvanović, M.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen 46 (1995), 19–25. MR 1316645 | Zbl 0860.53010
[35] Schouten, J. A.: Ricci-Calculus, An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin–Göttingen–Heidelberg, 1954. MR 0066025 | Zbl 0057.37803
[36] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979, (in Russian). MR 0552022 | Zbl 0637.53020
[37] Sen, R. N., Chaki, M. C.: On curvature restrictions of a certain kind of conformally flat Riemannian space of class one. Proc. Nat. Inst. Sci. India 33, (part I) (1967), 100–102. MR 0232308 | Zbl 0163.43401
[38] Takeno, H., Ikeda, M.: Theory of spherically symmetric space-times. VII. Space-times with corresponding geodesics. J. Sci. Hiroshima Univ. A 17, 1 (1953), 75–81. MR 0059664
[39] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projectively symmetric Riemannian manifolds. Colloq. Math. Soc. Janos Bolyai 56 (1989), 663–670. MR 1211691
[40] Tamássy, L., Binh, T. Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor, N. S. 53 (1993), 140–148. MR 1455411
[41] Walker, A. G.: On Ruse’s space of recurrent curvature. Proc. London Math. Soc. 52 (1950), 36–54.
[42] Yano, K., Kon, M.: Structures on manifolds. World Scientific, Singapore, 1984, 418–421. MR 0794310 | Zbl 0557.53001
[43] Yilmaz, H. B.: On decomposable almost pseudo conharmonically symmetric manifolds. Acta Univ. Palacki. Olomuc. Fac. rer. nat., Math. 51 (2012), 111–124. MR 3060013 | Zbl 1273.53010
Partner of
EuDML logo