Previous |  Up |  Next

Article

Title: Ulam Stabilities for Partial Impulsive Fractional Differential Equations (English)
Author: Abbas, Saïd
Author: Benchohra, Mouffak
Author: Nieto, Juan J.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 1
Year: 2014
Pages: 5-17
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the existence of solutions for the initial value problems (IVP for short), for a class of implicit impulsive hyperbolic differential equations by using the lower and upper solutions method combined with Schauder’s fixed point theorem. (English)
Keyword: fractional differential equations
Keyword: impulse
Keyword: Caputo fractional order derivative
Keyword: left-sided mixed Riemann–Liouville integral
Keyword: Darboux problem
Keyword: Ulam stability
MSC: 26A33
MSC: 34A37
MSC: 34G20
idZBL: Zbl 06416938
idMR: MR3329227
.
Date available: 2014-09-01T07:50:58Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143910
.
Reference: [1] Abbas, S., Baleanu, D., Benchohra, M.: Global attractivity for fractional order delay partial integro-differential equations. Adv. Difference Equ. 2012, 62 doi:10.1186/1687-1847-2012-62 (2012), 1–10, online. Zbl 1302.35392, MR 2958362, 10.1186/1687-1847-2012-62
Reference: [2] Abbas, S., Benchohra, M.: Darboux problem for perturbed partial differential equations of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604. Zbl 1219.35345, MR 2561676
Reference: [3] Abbas, S., Benchohra, M.: Fractional order partial hyperbolic differential equations involving Caputo’s derivative. Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479. Zbl 1289.26008, MR 3034096
Reference: [4] Abbas, S., Benchohra, M.: Upper and lower solutions method for Darboux problem for fractional order implicit impulsive partial hyperbolic differential equations. Acta Univ. Palacki. Olomuc., Math. 51, 2 (2012), 5–18. Zbl 1302.35393, MR 3058869
Reference: [5] Abbas, S., Benchohra, M., Cabada, A.: Partial neutral functional integro-differential equations of fractional order with delay. Bound. Value Prob. 2012, 128 (2012), 1–15. Zbl 1278.26006, MR 3016041
Reference: [6] Abbas, S., Benchohra, M., Górniewicz, L.: Existence theory for impulsive partial hyperbolic functional differential equations involving the Caputo fractional derivative. Sci. Math. Jpn. e-2010 (2010), 271–282, online. Zbl 1200.26004, MR 2666846
Reference: [7] Abbas, S., Benchohra, M., Henderson, J.: Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras. Nonlinear Studies 20, 1 (2013), 1–10. Zbl 1305.45005, MR 3058403
Reference: [8] Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Developments in Mathematics 27, Springer, New York, 2012. Zbl 1273.35001, MR 2962045
Reference: [9] Abbas, S., Benchohra, M., Vityuk, A. N.: On fractional order derivatives and Darboux problem for implicit differential equations. Fract. Calc. Appl. Anal. 15, 2 (2012), 168–182. Zbl 1302.35395, MR 2897771, 10.2478/s13540-012-0012-5
Reference: [10] Abbas, S., Benchohra, M., Zhou, Y.: Darboux problem for tractional order neutral functional partial hyperbolic differential equations. Int. J. Dynam. Syst. Differ. Equa. 2 (2009), 301–312. MR 2583101
Reference: [11] Ahmad, B., Nieto, J. J.: Riemann-Liouville fractional differential equations with fractional boundary conditions. Fixed Point Theory 13 (2012), 329–336. Zbl 1315.34006, MR 3024321
Reference: [12] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. Zbl 1248.26011, MR 2894576
Reference: [13] Benchohra, M., Graef, J. R., Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87, 7 (2008), 851–863. MR 2458962, 10.1080/00036810802307579
Reference: [14] Bota-Boriceanu, M. F., Petrusel, A.: Ulam–Hyers stability for operatorial equations and inclusions. Analele Univ. I. Cuza Iasi 57 (2011), 65–74. MR 2933569
Reference: [15] Cabada, A., Staněk, S.: Functional fractional boundary value problems with singular $\phi $-Laplacian. Appl. Math. Comput. 219 (2012), 1383–1390. Zbl 1296.34013, MR 2983850, 10.1016/j.amc.2012.07.062
Reference: [16] Castro, L. P., Ramos, A.: Hyers–Ulam–Rassias stability for a class of Volterra integral equations. Banach J. Math. Anal. 3 (2009), 36–43. MR 2461744, 10.15352/bjma/1240336421
Reference: [17] Henry, D.: Geometric theory of Semilinear Parabolic Partial Differential Equations. Springer-Verlag, Berlin–New York, 1989.
Reference: [18] Hilfer, R., R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000. Zbl 0998.26002, MR 1890104
Reference: [19] Hyers, D. H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. 27 (1941), 222–224. Zbl 0061.26403, MR 0004076, 10.1073/pnas.27.4.222
Reference: [20] Hyers, D. H., Isac, G., Rassias, Th. M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel, 1998. Zbl 0907.39025, MR 1639801
Reference: [21] Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York, 2011. Zbl 1221.39038, MR 2790773
Reference: [22] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, Article ID 57064 (2007), 1–9. Zbl 1155.45005, MR 2318689
Reference: [23] Kilbas, A. A., Marzan, S. A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84–89. Zbl 1160.34301, MR 2213269, 10.1007/s10625-005-0137-y
Reference: [24] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [25] Ortigueira, M. D.: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering 84, Springer, Dordrecht, 2011. Zbl 1251.26005, MR 2768178, 10.1007/978-94-007-0747-4
Reference: [26] Petru, T. P., Bota, M.-F.: Ulam-Hyers stabillity of operational inclusions in complete gauge spaces. Fixed Point Theory 13 (2012), 641–650. MR 3024346
Reference: [27] Petru, T. P., Petrusel, A., Yao, J.-C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwanese J. Math. 15 (2011), 2169–2193. Zbl 1246.54049, MR 2880400
Reference: [28] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [29] Rassias, Th. M.: On the stability of linear mappings in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297–300. MR 0507327, 10.1090/S0002-9939-1978-0507327-1
Reference: [30] Rus, I. A.: Ulam stability of ordinary differential equations. Studia Univ. Babes-Bolyai, Math. 54, 4 (2009), 125–133. Zbl 1224.34165, MR 2602351
Reference: [31] Rus, I. A.: Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10 (2009), 305–320. Zbl 1204.47071, MR 2569004
Reference: [32] Staněk, S.: Limit properties of positive solutions of fractional boundary value problems. Appl. Math. Comput. 219 (2012), 2361–2370. Zbl 1308.34104, MR 2988118, 10.1016/j.amc.2012.09.008
Reference: [33] Tarasov, V. E.: Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg, 2010. Zbl 1214.81004, MR 2796453
Reference: [34] Ulam, S. M.: A Collection of Mathematical Problems. Interscience Publishers, New York, 1968. MR 0120127
Reference: [35] Vityuk, A. N., Golushkov, A. V.: Existence of solutions of systems of partial differential equations of fractional order. Nonlinear Oscil. 7, 3 (2004), 318–325. MR 2151816, 10.1007/s11072-005-0015-9
Reference: [36] Wang, J., Fečkan, M., Zhou, Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 1 (2012), 258–264. Zbl 1254.34022, MR 2943620, 10.1016/j.jmaa.2012.05.040
Reference: [37] Wang, J., Fečkan, M., Zhou, Y: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 4 (2011), 345–361. Zbl 1264.34014, MR 2901608
Reference: [38] Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. E. J. Qual. Theory Diff. Equ. 63 (2011), 1–10. MR 2832769, 10.14232/ejqtde.2011.1.63
Reference: [39] Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530–2538. Zbl 1252.35276, MR 2877697, 10.1016/j.cnsns.2011.09.030
Reference: [40] Wang, J., Zhou, Y.: Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 25, 4 (2012), 723–728. Zbl 1246.34012, MR 2875807, 10.1016/j.aml.2011.10.009
Reference: [41] Wang, J., Zhou, Y., Fečkan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math. Appl. 64 (2012), 3389–3405. Zbl 1268.34033, MR 2989367, 10.1016/j.camwa.2012.02.021
Reference: [42] Wei, W., Li, X., Li, X.: New stability results for fractional integral equation. Comput. Math. Appl. 64 (2012), 3468–3476. Zbl 1268.45007, MR 2989374, 10.1016/j.camwa.2012.02.057
.

Files

Files Size Format View
ActaOlom_53-2014-1_1.pdf 253.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo