Previous |  Up |  Next

Article

Keywords:
geometry of numbers; Diophantine approximation; approximation constants; critical determinant
Summary:
After a brief exposition of the state-of-art of research on the (Euclidean) simultaneous Diophantine approximation constants $\theta _s$, new lower bounds are deduced for $\theta _6$ and $\theta _7$.
References:
[1] Armitage, J.V.: On a method of Mordell in the geometry of numbers. Mathematika, 2, 1955, 132-140, DOI 10.1112/S0025579300000772 | MR 0077574 | Zbl 0066.03602
[2] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc., 15, 1914, 227-235, DOI 10.1090/S0002-9947-1914-1500976-6 | MR 1500976
[3] Davenport, H.: On the product of three homogeneous linear forms. J. London Math. Soc., 13, 1938, 139-145, DOI 10.1112/jlms/s1-13.2.139 | MR 1574142 | Zbl 0019.19603
[4] Davenport, H.: On the minimum of a ternary cubic form. J. London Math. Soc., 19, 1944, 13-18, DOI 10.1112/jlms/19.73_Part_1.13 | MR 0010706 | Zbl 0060.11911
[5] Davenport, H.: On a theorem of Furtwängler. J. London Math. Soc., 30, 1955, 185-195, MR 0067943 | Zbl 0064.04501
[6] Davenport, H., Mahler, K.: Simultaneous Diophantine approximation. Duke Math. J., 13, 1946, 105-111, DOI 10.1215/S0012-7094-46-01311-7 | MR 0016068 | Zbl 0060.12000
[7] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, MR 0893813 | Zbl 0611.10017
[8] Mordell, L.J.: The product of three homogeneous linear ternary forms. J. London Math. Soc., 17, 1942, 107-115, DOI 10.1112/jlms/s1-17.2.107 | MR 0007404 | Zbl 0028.11205
[9] Mordell, L.J.: Observation on the minimum of a positive quadratic form in eight variables. J. London Math. Soc., 19, 1944, 3-6, DOI 10.1112/jlms/19.73_Part_1.3 | MR 0010708 | Zbl 0060.12009
[10] Mordell, L.J.: On the minimum of a ternary cubic form. J. London Math. Soc., 19, 1944, 6-12, DOI 10.1112/jlms/19.73_Part_1.6 | MR 0010707 | Zbl 0060.11910
[11] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie. 1975, Bibliograph. Inst., Mannheim,
[12] Nowak, W.G.: On simultaneous Diophantine approximation. Rend. Circ. Mat. Palermo, Ser. II, 33, 1984, 456-460, MR 0779948 | Zbl 0535.10036
[13] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in ${\fam 5 R}^3$ and ${\fam 5 R}^4$. Math. Pannonica, 10, 1999, 111-122, MR 1678107
[14] Nowak, W.G.: Diophantine approximation in ${\fam 5 R}^s$: On a method of Mordell and Armitage. Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998, 2000, 339-349, W. de Gruyter, Berlin, MR 1770472
[15] Prasad, A.V.: Simultaneous Diophantine approximation. Proc. Indian Acad. Sci. A, 31, 1950, 1-15, MR 0036270 | Zbl 0036.30801
[16] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math., 90, 1968, 885-894, DOI 10.2307/2373489 | MR 0231794
[17] Žilinskas, G.: On the product of four homogeneous linear forms. J. London Math. Soc., 16, 1941, 27-37, DOI 10.1112/jlms/s1-16.1.27 | MR 0005531 | Zbl 0028.34901
Partner of
EuDML logo