Previous |  Up |  Next

Article

Keywords:
Diophantine equations; $S$-unit equations; $S$-Diophantine tuples
Summary:
Let $(a_1,\dots , a_m)$ be an $m$-tuple of positive, pairwise distinct integers. If for all $1\leq i< j \leq m$ the prime divisors of $a_ia_j+1$ come from the same fixed set $S$, then we call the $m$-tuple $S$-Diophantine. In this note we estimate the number of $S$-Diophantine quadruples in terms of $|S|=r$.
References:
[1] Amoroso, F., Viada, E.: Small points on subvarieties of a torus. Duke Math. J., 150, 3, 2009, 407-442, DOI 10.1215/00127094-2009-056 | MR 2582101 | Zbl 1234.11081
[2] Bugeaud, Y., Luca, F.: A quantitative lower bound for the greatest prime factor of $(ab+1)(bc+1)(ca+1)$. Acta Arith., 114, 3, 2004, 275-294, DOI 10.4064/aa114-3-3 | MR 2071083 | Zbl 1122.11060
[3] Corvaja, P., Zannier, U.: On the greatest prime factor of $(ab+1)(ac+1)$. Proc. Amer. Math. Soc., 131, 6, 2003, 1705-1709, (electronic). DOI 10.1090/S0002-9939-02-06771-0 | MR 1955256 | Zbl 1077.11052
[4] Erdős, P., Turan, P.: On a Problem in the Elementary Theory of Numbers. Amer. Math. Monthly, 41, 10, 1934, 608-611, DOI 10.2307/2301909 | MR 1523239 | Zbl 0010.29401
[5] Evertse, J.-H.: On equations in $S$-units, the Thue-Mahler equation. Invent. Math., 75, 3, 1984, 561-584, DOI 10.1007/BF01388644 | MR 0735341
[6] Evertse, J.-H., Ferretti, R. G.: A further improvement of the quantitative subspace theorem. Ann. of Math. (2), 177, 2, 2013, 513-590, DOI 10.4007/annals.2013.177.2.4 | MR 3010806
[7] Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M.: Linear equations in variables which lie in a multiplicative group. Ann. of Math. (2), 155, 3, 2002, 807-836, DOI 10.2307/3062133 | MR 1923966 | Zbl 1026.11038
[8] Győry, K., Sárközy, A., Stewart, C. L.: On the number of prime factors of integers of the form $ab+1$. Acta Arith., 74, 4, 1996, 365-385, MR 1378230 | Zbl 0857.11047
[9] Hernández, S., Luca, F.: On the largest prime factor of $(ab+1)(ac+1)(bc+1)$. Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244, MR 2029272 | Zbl 1108.11030
[10] Luca, F.: On the greatest common divisor of $u-1$ and $v-1$ with $u$ and $v$ near $S$-units. Monatsh. Math., 146, 3, 2005, 239-256, DOI 10.1007/s00605-005-0303-6 | MR 2184226
[11] Mihăilescu, P.: Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math., 572, 2004, 167-195, MR 2076124 | Zbl 1067.11017
[12] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. II. J. Reine Angew. Math., 365, 1986, 171-191, MR 0826157 | Zbl 0578.10045
[13] Sárközy, A., Stewart, C. L.: On divisors of sums of integers. V. Pacific J. Math., 166, 2, 1994, 373-384, DOI 10.2140/pjm.1994.166.373 | MR 1313461 | Zbl 0841.11049
[14] Sárközy, A., Stewart, C. L.: On prime factors of integers of the form $ab+1$. Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday.. MR 1766000 | Zbl 0960.11045
[15] Stewart, C. L., Tijdeman, R.: On the greatest prime factor of $(ab+1)(ac+1)(bc+1)$. Acta Arith., 79, 1, 1997, 93-101, MR 1438120 | Zbl 0869.11072
[16] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with $S={2,q}$. (in preperation).
[17] Szalay, L., Ziegler, V.: On an $S$-unit variant of Diophantine $m$-tuples. Publ. Math. Debrecen, 83, 1--2, 2013, 97-121, DOI 10.5486/PMD.2013.5521 | MR 3081229 | Zbl 1274.11095
[18] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with two primes congruent 3 modulo 4. Integers, 13, 2013, Paper No. A80, 9pp.. MR 3167927
Partner of
EuDML logo