[8] Bereanu, C., Jebelean, P., Mawhin, J.:
Variational methods for nonlinear perturbations of singular $\phi$-Laplacians. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 22 (2011), 89-111.
DOI 10.4171/RLM/589 |
MR 2799910
[12] Bereanu, C., Jebelean, P., Şerban, C.:
Nontrivial solutions for a class of one-parameter problems with singular $\phi$-Laplacian. Ann. Univ. Buchar., Math. Ser. 3(61) (2012), 155-162.
MR 3034970 |
Zbl 1274.35078
[13] Bereanu, C., Jebelean, P., Torres, P. J.:
Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space. J. Funct. Anal. 264 (2013), 270-287.
DOI 10.1016/j.jfa.2012.10.010 |
MR 2995707
[16] Brézis, H.:
Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent. Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. III, 129-146, Res. Notes Math. 70, Pitman, Boston, 1982.
MR 0670270 |
Zbl 0514.35031
[17] Brézis, H., Mawhin, J.:
Periodic solutions of the forced relativistic pendulum. Differ. Integral Equ. 23 (2010), 801-810.
MR 2675583 |
Zbl 1240.34207
[19] Coelho, I., Corsato, C., Obersnel, F., Omari, P.:
Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation. Adv. Nonlinear Stud. 12 (2012), 621-638.
DOI 10.1515/ans-2012-0310 |
MR 2976056 |
Zbl 1263.34028
[20] Coelho, I., Corsato, C., Rivetti, S.: Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball. Topol. Methods Nonlinear Anal (to appear).
[21] Corsato, C., Obersnel, F., Omari, P., Rivetti, S.:
Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space. J. Math. Anal. Appl. 405 (2013), 227-239.
DOI 10.1016/j.jmaa.2013.04.003 |
MR 3053503
[23] Mawhin, J.:
Semicoercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130.
MR 0938142
[27] Pohožaev, S. I.:
On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39.
MR 0192184
[28] Rabinowitz, P. H.:
On a class of functionals invariant under a $\mathbb Z^n$ action. Trans. Am. Math. Soc. 310 (1988), 303-311.
MR 0965755
[30] Willem, M.:
Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996).
MR 1400007 |
Zbl 0856.49001