Previous |  Up |  Next

Article

Keywords:
continuum spectrum; extremal solution; boundary reaction
Summary:
We study the semilinear problem with the boundary reaction \[ -\Delta u + u = 0 \quad \text {in} \ \Omega , \qquad \frac {\partial u}{\partial \nu } = \lambda f(u) \quad \text {on} \ \partial \Omega , \] where $\Omega \subset \mathbb {R}^N$, $N \ge 2$, is a smooth bounded domain, $f\colon [0, \infty ) \to (0, \infty )$ is a smooth, strictly positive, convex, increasing function which is superlinear at $\infty $, and $\lambda >0$ is a parameter. It is known that there exists an extremal parameter $\lambda ^* > 0$ such that a classical minimal solution exists for $\lambda < \lambda ^*$, and there is no solution for $\lambda > \lambda ^*$. Moreover, there is a unique weak solution $u^*$ corresponding to the parameter $\lambda = \lambda ^*$. In this paper, we continue to study the spectral properties of $u^*$ and show a phenomenon of continuum spectrum for the corresponding linearized eigenvalue problem.
References:
[1] Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow up for $u_t - \Delta u = g(u)$ revisited. Adv. Differ. Equ. 1 73-90 (1996). MR 1357955
[2] Brezis, H., Vázquez, J. L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complutense Madr. 10 443-469 (1997). MR 1605678 | Zbl 0894.35038
[3] Cabré, X., Martel, Y.: Weak eigenfunctions for the linearization of extremal elliptic problems. J. Funct. Anal. 156 30-56 (1998). DOI 10.1006/jfan.1997.3171 | MR 1632972 | Zbl 0908.35044
[4] Chipot, M., Shafrir, I., Fila, M.: On the solutions to some elliptic equations with nonlinear Neumann boundary conditions. Adv. Differ. Equ. 1 91-110 (1996). MR 1357956 | Zbl 0839.35042
[5] Dávila, J.: Singular solutions of semi-linear elliptic problems. Handbook of Differential Equations: Stationary Partial Differential Equations Elsevier, Amsterdam 83-176 (2008). MR 2569324 | Zbl 1191.35131
[6] Dávila, J., Dupaigne, L., Montenegro, M.: The extremal solution of a boundary reaction problem. Commun. Pure Appl. Anal. 7 795-817 (2008). DOI 10.3934/cpaa.2008.7.795 | MR 2393398 | Zbl 1156.35039
[7] Dupaigne, L.: Stable Solutions of Elliptic Partial Differential Equations. Chapman & Hall Monographs and Surveys in Pure and Applied Mathematics 143 CRC Press, Boca Raton (2011). MR 2779463 | Zbl 1228.35004
[8] Martel, Y.: Uniqueness of weak extremal solutions of nonlinear elliptic problems. Houston J. Math. 23 161-168 (1997). MR 1688823 | Zbl 0884.35037
[9] Quittner, P., Reichel, W.: Very weak solutions to elliptic equations with nonlinear Neumann boundary conditions. Calc. Var. Partial Differ. Equ. 32 429-452 (2008). DOI 10.1007/s00526-007-0155-0 | MR 2402918 | Zbl 1147.35042
[10] Takahashi, F.: Extremal solutions to Liouville-Gelfand type elliptic problems with nonlinear Neumann boundary conditions. Commun. Contemp. Math. 27 pages, DOI:10.1142/S0219199714500163 (2014). DOI 10.1142/S0219199714500163 | MR 3325039
Partner of
EuDML logo