Previous |  Up |  Next

Article

Keywords:
extensions; semidirect products; Moufang loops; inverse property loops
Summary:
We investigate loops which can be written as the semidirect product of a loop and a group, and we provide a necessary and sufficient condition for such a loop to be Moufang. We also examine a class of loop extensions which arise as a result of a finite cyclic group acting as a group of semiautomorphisms on an inverse property loop. In particular, we consider closure properties of certain extensions similar to those as in [S. Gagola III, Cyclic extensions of Moufang loops induced by semiautomorphisms, J. Algebra Appl. 13 (2014), no. 4, 1350128], but from an external point of view.
References:
[1] Bruck R.H.: Pseudo-automorphisms and Moufang loops. Proc. Amer. Math. Soc. 2 (1952), 66–72. DOI 10.1090/S0002-9939-1952-0047635-6 | MR 0047635 | Zbl 0046.01803
[2] Bruck R.H.: A Survey of Binary Systems. Springer, Berlin, 1971. MR 0093552 | Zbl 0141.01401
[3] Chein O.: Moufang loops of small order. I. Trans. Amer. Math. Soc. 188 (1974), 31–51. DOI 10.1090/S0002-9947-1974-0330336-3 | MR 0330336 | Zbl 0286.20088
[4] Chein O.: Moufang loops of small order. Mem. Amer. Math. Soc. 13 (1978), no. 197. MR 0466391 | Zbl 0378.20053
[5] Greer M.: Semiautomorphic inverse property loops. submitted.
[6] The GAP Group: Groups, Algorithms, and Programming. http://www.gap-system.org (2008).
[7] Gagola S. III: Cyclic extensions of Moufang loops induced by semiautomorphisms. J. Algebra Appl. 13 (2014), no. 4, 1350128. DOI 10.1142/S0219498813501284 | MR 3153863
[8] Kinyon M.K., Jones O.: Loops and semidirect products. Comm. Algebra 28 (2000), 4137–4164. DOI 10.1080/00927870008827079 | MR 1772003 | Zbl 0974.20049
[9] Kinyon M.K., Kunen K., Phillips J.D.: A generalization of Moufang and Steiner loops. Algebra Universalis 48 (2002), 81–101. DOI 10.1007/s00012-002-8205-0 | MR 1930034 | Zbl 1058.20057
[10] McCune W.W.: Prover9, Mace4. http://www.cs.unm.edu/ mccune/prover9/ (2009).
[11] Nagy G.P., Vojtěchovský P.: Loops: Computing with quasigroups and loops. http://www.math.du.edu/loops (2008).
[12] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
Partner of
EuDML logo