Previous |  Up |  Next

Article

Keywords:
exceptional Lie algebras; octonions; $E_7$
Summary:
We explicitly construct a particular real form of the Lie algebra $\mathfrak e_7$ in terms of symplectic matrices over the octonions, thus justifying the identifications $\mathfrak e_7\cong \mathfrak{sp}(6,\mathbb O)$ and, at the group level, $E_7\cong\text{Sp}(6,\mathbb O)$. Along the way, we provide a geometric description of the minimal representation of $\mathfrak e_7$ in terms of rank 3 objects called cubies.
References:
[1] Freudenthal H.: Lie groups in the foundations of geometry. Adv. Math. 1 (1964), 145–190. DOI 10.1016/0001-8708(65)90038-1 | MR 0170974 | Zbl 0125.10003
[2] Tits J.: Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. Indag. Math. 28 (1966), 223–237. DOI 10.1016/S1385-7258(66)50028-2 | MR 0219578 | Zbl 0139.03204
[3] Dray T., Manogue C.A.: Octonions and the structure of $E_6$. Comment. Math. Univ. Carolin. 51 (2010), 193–207. MR 2682473
[4] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics. J. Phys.: Conference Series 254 (2010), 012005.
[5] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors. J. Phys. A17 (1984), 939–955. MR 0743176 | Zbl 0544.22010
[6] Barton C.H., Sudbery A.: Magic squares and matrix models of Lie algebras. Adv. Math. 180 (2003), 596–647. DOI 10.1016/S0001-8708(03)00015-X | MR 2020553 | Zbl 1077.17011
[7] Freudenthal H.: Beziehungen der $E_7$ und $E_8$ zur Oktavenebene, I. Proc. Kon. Ned. Akad. Wet. A57 (1954), 218–230. MR 0063358 | Zbl 0055.02001
[8] Brown R.B.: Groups of type $E_7$. J. Reine Angew. Math. 236 (1969), 79–102. MR 0248185
[9] Wilson R.A.: A quaternionic construction of $E_7$. Proc. Amer. Math. Soc. 142 (2014), 867–880. DOI 10.1090/S0002-9939-2013-11838-1 | MR 3148521
[10] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras. J. Math. Phys. 34 (1993), 3746–3767. DOI 10.1063/1.530056 | MR 1230549 | Zbl 0797.53075
[11] Kincaid J., Dray T.: Division algebra representations of $ {SO}(4,2)$. arXiv: 1312.7391.
[12] Kincaid J.J.: Division algebra representations of $ {SO}(4,2)$. Master's thesis, Oregon State University, 2012, available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682
[13] Dray T., Huerta J., Kincaid J.: The $2\times2$ Lie group magic square. in preparation.
[14] Röhrle G.: On extraspecial parabolic subgroups. Contemp. Math. 153 (1993), 143–155. DOI 10.1090/conm/153/01310 | MR 1247502 | Zbl 0832.20071
Partner of
EuDML logo