[1] Abramson M.P.:
Historical background to Gröbner's paper. ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 22–23.
MR 2571829
[2] Adams W.W., Loustaunau P.:
An Introduction to Gröbner Bases. American Mathematical Society, Providence, RI, 1994.
MR 1287608 |
Zbl 0803.13015
[5] Baader F., Nipkow T.:
Term Rewriting and All That. Cambridge University Press, Cambridge, 1998.
MR 1629216 |
Zbl 0948.68098
[6] Bai C., Liu L., Ni X.:
Some results on L-dendriform algebras. J. Geom. Phys. 60 (2010), no. 6-8, 940–950.
MR 2647294
[7] Bashir S.:
Automorphisms of simple anti-Jordan pairs. Ph.D. thesis, University of Ottawa, Canada, 2008.
MR 2712919
[8] Becker T., Weispfenning V.:
Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York, 1993.
MR 1213453 |
Zbl 0772.13010
[11] Birkhoff G.:
On the structure of abstract algebras. Proc. Cambridge Philos. Soc. 31 (1935), no. 4, 433–454.
Zbl 0013.00105
[14] Bokut L.A.:
The method of Gröbner-Shirshov bases. Siberian Adv. Math. 9 (1999), no. 3, 1–16.
MR 1796985 |
Zbl 0937.17004
[15] Bokut L.A., Chen Y.:
Gröbner-Shirshov bases for Lie algebras: after A.I. Shirshov. Southeast Asian Bull. Math. 31 (2007), no. 6, 1057–1076.
MR 2386984 |
Zbl 1150.17008
[16] Bokut L.A., Chen Y., Deng X.:
Gröbner-Shirshov bases for Rota-Baxter algebras. Sibirsk. Mat. Zh. 51 (2010), no. 6, 1237–1250.
MR 2797594 |
Zbl 1235.16021
[18] Bokut L.A., Chen Y., Li Y.:
Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras. Fundam. Prikl. Mat. 14 (2008), no. 8, 55–67.
MR 2744933
[21] Bokut L.A., Chibrikov E.S.:
Lyndon-Shirshov words, Gröbner-Shirshov bases, and free Lie algebras. Non-associative Algebra and Its Applications, pp. 17–39, Chapman & Hall/CRC, Boca Raton, 2006.
MR 2203694
[22] Bokut L.A., Kolesnikov P.S.:
Gröbner-Shirshov bases: from their incipiency to the present. J. Math. Sci. (N.Y.) 116 (2003), no. 1, 2894–2916.
DOI 10.1023/A:1023490323855 |
MR 1811792
[23] Bokut L.A., Kukin G.P.:
Algorithmic and Combinatorial Algebra. Kluwer Academic Publishers Group, Dordrecht, 1994.
MR 1292459 |
Zbl 0826.17002
[24] Bokut L.A., Shum K.P.:
Gröbner and Gröbner-Shirshov bases in algebra: an elementary approach. Southeast Asian Bull. Math. 29 (2005), no. 2, 227–252.
MR 2217531 |
Zbl 1133.16037
[27] Bremner M.R.:
Algebras, dialgebras, and polynomial identities. Serdica Math. J. 38 (2012), 91–136.
MR 3014494
[31] Bremner M.R., Peresi L.A.:
An application of lattice basis reduction to polynomial identities for algebraic structures. Linear Algebra Appl. 430 (2009), no. 2-3, 642–659.
MR 2469318 |
Zbl 1173.17001
[33] Buchberger B.:
An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. translated from the 1965 German original by Michael P. Abramson, J. Symbolic Comput. 41 (2006), no. 3-4, 475–511.
MR 2202562 |
Zbl 1158.01307
[35] Buchberger B.:
History and basic features of the critical-pair/completion procedure. Rewriting Techniques and Applications (Dijon, 1985), J. Symbolic Comput. 3 (1987), nos. 1–2, 3–38.
MR 0893184 |
Zbl 0645.68094
[36] Buchberger B.:
Comments on the translation of my Ph.D. thesis: “An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal”. J. Symbolic Comput. 41 (2006), no. 3-4, 471–474.
MR 2202561
[37] Bueso J., Gómez-Torrecillas J., Verschoren A.:
Algorithmic Methods in Noncommutative Algebra: Applications to Quantum Groups. Kluwer Academic Publishers, Dordrecht, 2003.
MR 2006329
[41] Chen Y., Wang B.:
Gröbner-Shirshov bases and Hilbert series of free dendriform algebras. Southeast Asian Bull. Math. 34 (2010), no. 4, 639–650.
MR 2768676 |
Zbl 1232.17002
[45] Clifton J.M.:
A simplification of the computation of the natural representation of the symmetric group $S_n$. Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250.
MR 0624907 |
Zbl 0443.20013
[46] Cohen A.M., Gijsbers D.A.H.:
Documentation on the GBNP Package. available at: tt{
http://www.win.tue.nl/{ asciitilde}amc/pub/grobner/doc.html}.
[47] Cox D., Little J., O'Shea D.:
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, New York, 1992.
MR 1189133 |
Zbl 1118.13001
[48] de Graaf W.A.:
Lie Algebras: Theory and Algorithms. North-Holland Publishing Co., Amsterdam, 2000.
MR 1743970 |
Zbl 1122.17300
[50] Dotsenko V., Khoroshkin A.:
Quillen homology for operads via Gröbner bases. Doc. Math. 18 (2013), 707–747.
MR 3084563 |
Zbl 1278.18018
[53] Elgendy H.A.:
Polynomial Identities and Enveloping Algebras for $n$-ary Structures. Ph.D. thesis, University of Saskatchewan, Canada, 2012.
MR 3152544
[56] Ene V., Herzog J.:
Gröbner Bases in Commutative Algebra. American Mathematical Society, Providence, RI, 2012.
MR 2850142 |
Zbl 1242.13001
[60] Fröberg R.:
An Introduction to Gröbner Bases. John Wiley & Sons, Ltd., Chichester, 1997.
MR 1483316 |
Zbl 0997.13500
[62] Gerritzen L.:
Hilbert series and non-associative Gröbner bases. Manuscripta Math. 103 (2000), no. 2, 161–167.
MR 1796312 |
Zbl 0961.17002
[66] Green E.L.:
An introduction to noncommutative Gröbner bases. Computational Algebra, pp. 167–190, Dekker, New York, 1994.
MR 1245952 |
Zbl 0807.16002
[67] Green E.L.:
Noncommutative Gröbner bases, and projective resolutions. Computational Methods for Representations of Groups and Algebras, pp. 29–60, Birkhäuser, Basel, 1999.
MR 1714602 |
Zbl 0957.16033
[68] Green E.L., Heath L.S., Keller B.J.:
Opal: a system for computing noncommutative Gröbner bases. Rewriting Techniques and Applications, pp. 331–334, Lecture Notes in Computer Science, 1232, Springer, 1997.
MR 1605520
[69] Green E.L., Mora T., Ufnarovski V.:
The non-commutative Gröbner freaks. Symbolic Rewriting Techniques (Ascona, 1995), pp. 93–104, Birkhäuser, Basel, 1998.
MR 1624647 |
Zbl 1020.16017
[70] Gröbner W.:
Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten. Monatsh. Math. Phys. 47 (1939), no. 1, 247–284.
DOI 10.1007/BF01695500 |
MR 1550816 |
Zbl 0021.22505
[71] Gröbner W.:
On the algebraic properties of integrals of linear differential equations with constant coefficients. translated from the German by Michael Abramson, ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 24–46.
MR 2571830
[76] Hou D., Ni X., Bai C.:
Pre-Jordan algebras. Math. Scand. 112 (2013), no. 1, 19–48.
MR 3057597
[78] Jacobson N.:
Structure and Representations of Jordan Algebras. American Mathematical Society, Providence, R.I., 1968.
MR 0251099 |
Zbl 0218.17010
[80] Keller B.J.:
Algorithms and Orders for Finding Noncommutative Gröbner Bases. Ph.D. thesis, Virginia Polytechnic Institute and State University, 1997.
MR 2696478
[81] Keller B.J.:
Alternatives in implementing noncommutative Gröbner basis systems. Symbolic Rewriting Techniques, pp. 105–126, Birkhüser, Basel, 1998.
MR 1624651 |
Zbl 0927.16042
[83] Knuth D.E., Bendix P.B.:
Simple word problems in universal algebras. Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 263–297, Pergamon, Oxford, 1970.
MR 0255472 |
Zbl 0188.04902
[84] Li H.:
Gröbner Bases in Ring Theory. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
MR 2894019
[87] Loday J.-L.:
Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39 (1993), no. 3-4, 269–293.
MR 1252069 |
Zbl 0806.55009
[88] Loday J.-L.:
Algèbres ayant deux opérations associatives (digèbres). C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 2, 141–146.
MR 1345436 |
Zbl 0845.16036
[89] Loday J.-L.:
Dialgebras. Dialgebras and Related Operads, pp. 7–66, Lecture Notes in Math., 1763, Springer, Berlin, 2001.
MR 1860994 |
Zbl 0999.17002
[91] Loday J.-L., Vallette B.:
Algebraic Operads. Grundlehren der Mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012.
MR 2954392 |
Zbl 1260.18001
[95] Madariaga S.:
Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras. J. Symbolic Comput. 60 (2014), 1–14.
DOI 10.1016/j.jsc.2013.10.016 |
MR 3131375
[96] Marché C.:
Normalized rewriting: a unified view of Knuth-Bendix completion and Gröbner bases computation. Symbolic Rewriting Techniques (Ascona, 1995), pp. 193–208, Progr. Comput. Sci. Appl. Logic, 15, Birkhäuser, Basel, 1998.
MR 1624584 |
Zbl 0915.68100
[97] Markl M., Shnider S., Stasheff J.:
Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002.
MR 1898414 |
Zbl 1017.18001
[99] Meyberg K.:
Lectures on Algebras and Triple Systems. The University of Virginia, Charlottesville, 1972, available online: tt{
http://www.math.uci.edu/{ asciitilde}brusso/Meyberg(Reduced2).pdf}.
MR 0340353
[101] Mora F.:
Groebner bases for noncommutative polynomial rings. Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, 229, pp. 353–362, Springer, Berlin, 1986.
DOI 10.1007/3-540-16776-5_740 |
MR 0864254
[103] Musson I.M.:
Lie Superalgebras and Enveloping Algebras. American Mathematical Society, Providence, 2012.
MR 2906817 |
Zbl 1255.17001
[105] The OEIS Foundation:
On-line Encyclopedia of Integer Sequences. tt{
http://oeis.org/}
[109] Qiu J.: Gröbner-Shirshov bases for commutative algebras with multiple operators and free commutative Rota-Baxter algebras. tt{arXiv:1301.5018}.
[110] Rajaee S.:
Non-associative Gröbner bases. J. Symbolic Comput. 41 (2006), no. 8, 887–904.
MR 2246715 |
Zbl 1236.17006
[113] Shirshov A.I.:
Some algorithmic problems for $\epsilon$-algebras. Sibirsk. Mat. Zh. 3 (1962), 132–137.
MR 0183744
[114] Shirshov A.I.:
On a hypothesis in the theory of Lie algebras. Sibirsk. Mat. Zh. 3 (1962), 297–301.
MR 0182684
[115] Shirshov A.I.:
Selected Works of A.I. Shirshov. translated by M.R. Bremner and M.V. Kotchetov, edited by L.A. Bokut, V.N. Latyshev, I.P. Shestakov and E. Zelmanov, Birkhäuser, Basel, 2009.
MR 2547481 |
Zbl 1188.01028
[117] Vallette B.:
Manin products, Koszul duality, Loday algebras and Deligne conjecture. J. Reine Angew. Math. 620 (2008), 105–164.
MR 2427978 |
Zbl 1159.18001
[118] Young A.:
The Collected Papers of Alfred Young (1873–1940). University of Toronto Press, 1977.
MR 0439548
[119] Zhukov A.I.:
Reduced systems of defining relations in non-associative algebras. Mat. Sbornik N.S. 27 (69) (1950), 267–280.
MR 0037831
[120] Zinbiel G.W.:
Encyclopedia of types of algebras 2010. Operads and Universal Algebra, pp. 217–297, Nankai Ser. Pure Appl. Math. Theoret. Phys., 9, World Sci. Publ., Hackensack, NJ, 2012.
MR 3013090