Previous |  Up |  Next

Article

Keywords:
prime near-rings; Jordan ideals; derivations; commutativity
Summary:
In this paper we investigate $3$-prime near-rings with derivations satisfying certain differential identities on Jordan ideals, and we provide examples to show that the assumed restrictions cannot be relaxed.
References:
[1] Argac N.: On prime and semiprime rings with derivations. Algebra Colloq. 13 (2006), no. 3, 371–380. DOI 10.1142/S1005386706000320 | MR 2233096 | Zbl 1096.16014
[2] Ashraf M., Ali A., Ali S.: $(\sigma ,\tau )$-derivations on prime near rings. Arch. Math. (Brno) 40 (2004), no. 3, 281–286. MR 2107023 | Zbl 1114.16040
[3] Ashraf M., Shakir A.: On $(\sigma , \tau )$-derivations of prime near-rings II. Sarajevo J. Math. 4 (2008), no. 16, 23–30. MR 2428485 | Zbl 1169.16028
[4] Beidar K.I., Fong Y., Wang X.K.: Posner and Herstein theorems for derivations of $3$-prime near-rings. Comm. Algebra 24 (1996), no. 5, 1581–1589. DOI 10.1080/00927879608825656 | MR 1386483 | Zbl 0849.16039
[5] Bell H.E.: On derivations in near-rings. II, Kluwer Academic Publishers, Dordrecht, 1997, pp. 191–197. MR 1492193 | Zbl 0911.16026
[6] Bell H.E., Argac N.: Derivations, products of derivations, and commutativity in near-rings. Algebra Colloq. 8 (2001), no. 4, 399–407. MR 1865120 | Zbl 1004.16046
[7] Bell H.E., Mason G.: On derivations in near-rings. North-Holland Math. Stud., 137, North-Holland, Amsterdam, 1987, pp. 31–35. DOI 10.1016/S0304-0208(08)72283-7 | MR 0890753 | Zbl 0810.16042
[8] Bell H.E., Mason G.: On derivations in near-rings and rings. Math. J. Okayama Univ. 34 (1992), 135–144. MR 1272613 | Zbl 0810.16042
[9] Boua A., Oukhtite L.: Derivations on prime near-rings. Int. J. Open Probl. Comput. Sci. Math. 4 (2011), no. 2, 162–167. MR 2805230
[10] Mansoor A.: Lie and Jordan ideals in prime rings with derivations. Proc. Amer. Math. Soc. 55 (1976), no. 2, 275–278. DOI 10.1090/S0002-9939-1976-0399181-4 | MR 0399181 | Zbl 0327.16021
[11] Oukhtite L., Mamouni A.: Derivations satisfying certain algebraic identities on Jordan ideals. Arab. J. Math. 1 (2012), no. 3, 341–346. DOI 10.1007/s40065-012-0039-9 | MR 3041071 | Zbl 1273.16038
[12] Oukhtite L.: Posner's second theorem for Jordan ideals in rings with involution. Expo. Math. 29 (2011), no. 4, 415–419. DOI 10.1016/j.exmath.2011.07.002 | MR 2861767 | Zbl 1232.16027
[13] Oukhtite L.: Left multipliers and Jordan ideals in rings with involution. Afr. Diaspora J. Math. 11 (2011), no. 1, 24–28. MR 2792207 | Zbl 1243.16045
[14] Oukhtite L.: On Jordan ideals and derivations in rings with involution. Comment. Math. Univ. Carolin. 51 (2010), no. 3, 389–395. MR 2741872 | Zbl 1211.16037
[15] Wang X.K.: Derivations in prime near-rings. Proc. Amer. Math. Soc. 121 (1994), 361–366. DOI 10.1090/S0002-9939-1994-1181177-7 | MR 1181177 | Zbl 0811.16040
[16] Zaidi S.M.A., Ashraf M., Ali S.: On Jordan ideals and left $(\theta ,\theta)$-derivations in prime rings. Int. J. Math. Math. Sci. 2004 (2004), no. 37–40, 1957–1964. DOI 10.1155/S0161171204309075 | MR 2100888 | Zbl 1069.16041
Partner of
EuDML logo