Previous |  Up |  Next

Article

Keywords:
continuity; $({\mathbf{G_1}},{\mathbf{G_2}})$-continuity; homogeneous; linearity; conditions (NL1) and (NL2); normed space
Summary:
In normed linear space settings, modifying the sequential definition of continuity of an operator by replacing the usual limit "$\lim $" with arbitrary linear regular summability methods $\bf {G}$ we consider the notion of a generalized continuity ($(\bf {G_1}, \bf {G_2}) $-continuity) and examine some of its consequences in respect of usual continuity and linearity of the operators between two normed linear spaces.
References:
[1] Antoni, J.: On the A-continuity of real functions II. Math. Slovaca 36 (1986), no. 3, 283–287. MR 0866628
[2] Antoni, J., Salat, T.: On the A-continuity of real functions. Acta Math. Univ. Comenian 39 (1980), 159–164. MR 0619271 | Zbl 0519.40006
[3] Boos, J.: Classical and Modern Methods in Summability. Oxford Univ. Press, Oxford, 2000. MR 1817226 | Zbl 0954.40001
[4] Borsik, J., Salat, T.: On F -continuity of real functions. Tatra Mt. Math. Publ. 2 (1993), 37–42. MR 1251035 | Zbl 0788.26004
[5] Buck, R.C.: Solution of problem 4216. Amer. Math. Monthly 55 (1948), 36. MR 1526874
[6] Cakalli, H.: Sequential definitions of compactness. Appl.Math. Lett. 21 (2008), no. 6, 594–598. DOI 10.1016/j.aml.2007.07.011 | MR 2412384 | Zbl 1145.54001
[7] Cakalli, H.: On G-continuity. Comput. Math. Appl. 61 (2011), 313–318. DOI 10.1016/j.camwa.2010.11.006 | MR 2754139 | Zbl 1211.40002
[8] Cakalli, H.: Sequential definitions of connectedness. Appl. Math. Lett. 25 (2012), 461–465. DOI 10.1016/j.aml.2011.09.036 | MR 2856014 | Zbl 1245.54021
[9] Cakalli, H., Das, P.: Fuzzy compactness via summability. Appl. Math. Lett. 22 (2009), no. 11, 1665–1669. DOI 10.1016/j.aml.2009.05.015 | MR 2569060 | Zbl 1180.54010
[10] Connor, J., Grosse-Erdmann, K.-G.: Sequential definitions of continuity for real functions. Rocky Mountain J. Math. 33 (2003), no. 1, 93–121. DOI 10.1216/rmjm/1181069988 | MR 1994482 | Zbl 1040.26001
[11] Dik, M., Canak, I.: New types of continuities. Abstr. Appl. Anal. 2010 (2010), p.6. DOI:  http://dx.doi.org/10.1155/2010/258980 MR 2646690 | Zbl 1192.26003
[12] Iwinski, T.B.: Some remarks on Toeplitz methods and continuity. Comment. Math. Prace Mat. 17 (1972), 37–43. MR 0322397 | Zbl 0243.40005
[13] Lahiri, B.K., Das, P.: $I$ and $I^*$ convergence in topological spaces. Math. Bohemica 130 (2005), no. 2, 153–160. MR 2148648 | Zbl 1111.40001
[14] Maio, G.D., Kocinac, Lj.D.R.: Statistical convergence in topology. Topology Appl. 156 (2008), 28–45. DOI 10.1016/j.topol.2008.01.015 | MR 2463821 | Zbl 1155.54004
[15] Posner, E.C.: Summability preserving functions. Proc. Amer. Math. Soc. 112 (1961), 73–76. DOI 10.1090/S0002-9939-1961-0121591-X | MR 0121591 | Zbl 0097.04602
[16] Robbins, H.: Problem 4216. Amer. Math. Monthly 53 (1946), 470–471.
[17] Savas, E., Das, G.: On the A-continuity of real functions. İstanbulÜniv. Fen Fak. Mat. Derg. 53 (1994), 61–66. MR 1421240
[18] Spigel, E., Krupnik, N.: On the $A$-continuity of real functions. J. Anal. 2 (1994), 145–155. MR 1281505
[19] Srinivasan, V.K.: An equivalent condition for the continuity of a function. Texas J. Sci. 32 (1980), 176–177. MR 0574766
Partner of
EuDML logo