[1] Başarir, M., Sonalcan, O.:
On some double sequence spaces. J. Indian Acad. Math. 21 (1999), 193–220.
MR 1754919 |
Zbl 0978.40002
[2] Bromwich, T.J.: An Introduction to the Theory of Infinite Series. Macmillan and Co. Ltd., New York, 1965.
[3] Dutta, H.:
An application of lacunary summability method to $n$-norm. Int. J. Appl. Math. Stat. 15 (09) (2009), 89–97.
MR 2578559
[4] Dutta, H.:
Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11 (2009), 60–67.
MR 2534057 |
Zbl 1195.40002
[9] Dutta, H., Başar, F.:
A generalization of Orlicz sequence spaces by Cesàro mean of order one. Acta Math. Univ. Comenian. (N.S.) 80 (2) (2011), 185–200.
MR 2835274 |
Zbl 1265.46004
[10] Dutta, H., Bilgin, T.:
Strongly $(V^\lambda , A, \Delta _{vm}^n, p)$-summable sequence spaces defined by an Orlicz function. Appl. Math. Lett. 24 (7) (2011), 1057–1062.
DOI 10.1016/j.aml.2011.01.022 |
MR 2784157
[11] Dutta, H., Reddy, B.S.:
On non-standard $n$-norm on some sequence spaces. Int. J. Pure Appl. Math. 68 (1) (2011), 1–11.
MR 2798332 |
Zbl 1232.46005
[12] Dutta, H., Reddy, B.S., Cheng, S.S.:
Strongly summable sequences defined over real $n$-normed spaces. Appl. Math. E-Notes 10 (2010), 199–209.
MR 2732898 |
Zbl 1226.46018
[13] Et, M., Çolak, R.: On generalized difference sequence spaces. Soochow J. Math. 21 (4) (1995), 377–386.
[15] Gunawan, H.:
On $n$-inner product, $n$-norms, and the Cauchy-Schwartz inequality. Sci. Math. Jap. 5 (2001), 47–54.
MR 1885776
[18] Hardy, G.H.: On the convergence of certain multiple series. Proc. Camb. Phil., Soc. 19 (1917), 86–95.
[23] Moricz, F.:
Extension of the spaces $c $ and $c_0$ from single to double sequences. Acta Math. Hungar. 57 (1991), 129–136.
DOI 10.1007/BF01903811 |
MR 1128849
[24] Moricz, F., Rhoades, B.E.:
Almost convergence of double sequences and strong reqularity of summability matrices. Math. Proc. Camb. Phil. Soc. 104 (1988), 283–294.
DOI 10.1017/S0305004100065464 |
MR 0948914
[25] Nakano, H.:
Modular sequence spaces. Proc. Japan Acad. Ser. A Math. Sci. 27 (1951), 508–512.
MR 0047929
[26] Raj, K., Sharma, A.K., Sharma, S.K.:
A sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 472–484.
MR 2814723
[27] Raj, K., Sharma, S.K., Sharma, A.K.:
Some difference sequence spaces in $n$-normed spaces defined by Musielak-Orlicz function. Armen. J. math. 3 (2010), 127–141.
MR 2792497
[28] Raj, K., Sharma, S.K., Sharma, A.K.:
Some new sequence spaces defined by a sequence of modulus functions in $n$-normed spaces. Int. J. Math. Sci. Engg. Appl. 5 (2011), 395–403.
MR 2797897
[29] Savaş, E.:
On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function. J. Inequal. Appl. (2010), 8 pages, Article ID 482392.
MR 2721579 |
Zbl 1213.46009
[30] Simons, S.: The sequence spaces $l(p_v)$ and $m(p_v)$. Proc. Japan Acad. 27 (1951), 508–512.
[31] Tripathy, B.C.:
Statistically convergent double sequences. Tamkang J. Math. 34 (2003), 231–237.
MR 2001918 |
Zbl 1040.40001
[32] Tripathy, B.C.:
Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces. Soochow J. Math. 30 (2004), 431–446.
MR 2106062
[33] Tripathy, B.C., Altin, Y., Et, M.:
Generalized difference sequence spaces on seminormed space defined by Orlicz function. Math. Slovaca 58 (2008), 315–324.
DOI 10.2478/s12175-008-0077-0 |
MR 2399244
[34] Tripathy, B.C., Dutta, H.:
On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary $\Delta _m^ n$ statistical convergence. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 20 (1) (2012), 417–430.
MR 2928432
[35] Tripathy, B.C., Esi, A., Tripathy, B.K.:
On a new type of generalized difference Cesàro sequence spaces. Soochow J. Math. 31 (3) (2005), 333–340.
MR 2167543 |
Zbl 1093.46507
[36] Wilansky, A.:
Summability through functional analysis. North-Holland Mathematics Studies, vol. 85, Amsterdam - New York - Oxford: North-Holland, 1984.
MR 0738632 |
Zbl 0531.40008